Cargando…
The diagnostic and prognostic value of radiomics and deep learning technologies for patients with solid pulmonary nodules in chest CT images
BACKGROUND: Solid pulmonary nodules are different from subsolid nodules and the diagnosis is much more challenging. We intended to evaluate the diagnostic and prognostic value of radiomics and deep learning technologies for solid pulmonary nodules. METHODS: Retrospectively enroll patients with patho...
Autores principales: | Zhang, Rui, Wei, Ying, Shi, Feng, Ren, Jing, Zhou, Qing, Li, Weimin, Chen, Bojiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9628173/ https://www.ncbi.nlm.nih.gov/pubmed/36319968 http://dx.doi.org/10.1186/s12885-022-10224-z |
Ejemplares similares
-
Developing of risk models for small solid and subsolid pulmonary nodules based on clinical and quantitative radiomics features
por: Zhang, Rui, et al.
Publicado: (2021) -
Predicting Lung Cancer Risk of Incidental Solid and Subsolid Pulmonary Nodules in Different Sizes
por: Zhang, Rui, et al.
Publicado: (2020) -
Performance of radiomics models derived from different CT reconstruction parameters for lung cancer risk prediction
por: Zhang, Rui, et al.
Publicado: (2023) -
Value of Whole-Thyroid CT-Based Radiomics in Predicting Benign and Malignant Thyroid Nodules
por: Xu, Han, et al.
Publicado: (2022) -
Radiomics as a non-invasive adjunct to Chest CT in distinguishing benign and malignant lung nodules
por: Selvam, Minmini, et al.
Publicado: (2023)