Cargando…

Genome-wide characterization and expression analysis of the growth-regulating factor family in Saccharum

BACKGROUND: Growth regulating factors (GRFs) are transcription factors that regulate diverse biological and physiological processes in plants, including growth, development, and abiotic stress. Although GRF family genes have been studied in a variety of plant species, knowledge about the identificat...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Zilin, Chen, Xinglong, Fu, Danwen, Zeng, Qiaoying, Gao, Xiaoning, Zhang, Nannan, Wu, Jiayun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9628180/
https://www.ncbi.nlm.nih.gov/pubmed/36319957
http://dx.doi.org/10.1186/s12870-022-03891-4
Descripción
Sumario:BACKGROUND: Growth regulating factors (GRFs) are transcription factors that regulate diverse biological and physiological processes in plants, including growth, development, and abiotic stress. Although GRF family genes have been studied in a variety of plant species, knowledge about the identification and expression patterns of GRFs in sugarcane (Saccharum spp.) is still lacking. RESULTS: In the present study, a comprehensive analysis was conducted in the genome of wild sugarcane (Saccharum spontaneum) and 10 SsGRF genes were identified and characterized. The phylogenetic relationship, gene structure, and expression profiling of these genes were analyzed entirely under both regular growth and low-nitrogen stress conditions. Phylogenetic analysis suggested that the 10 SsGRF members were categorized into six clusters. Gene structure analysis indicated that the SsGRF members in the same group were greatly conserved. Expression profiling demonstrated that most SsGRF genes were extremely expressed in immature tissues, implying their critical roles in sugarcane growth and development. Expression analysis based on transcriptome data and real-time quantitative PCR verification revealed that GRF1 and GRF3 were distinctly differentially expressed in response to low-nitrogen stress, which meant that they were additional participated in sugarcane stress tolerance. CONCLUSION: Our study provides a scientific basis for the potential functional prediction of SsGRF and will be further scrutinized by examining their regulatory network in sugarcane development and abiotic stress response, and ultimately facilitating their application in cultivated sugarcane breeding. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12870-022-03891-4.