Cargando…
Graph-based Fusion Modeling and Explanation for Disease Trajectory Prediction
We propose a relational graph to incorporate clinical similarity between patients while building personalized clinical event predictors with a focus on hospitalized COVID-19 patients. Our graph formation process fuses heterogeneous data, i.e., chest X-rays as node features and non-imaging EHR for ed...
Autores principales: | Tariq, Amara, Tang, Siyi, Sakhi, Hifza, Celi, Leo Anthony, Newsome, Janice M., Rubin, Daniel L., Trivedi, Hari, Gichoy, Judy Wawira, Patel, Bhavik, Banerjee, Imon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9628192/ https://www.ncbi.nlm.nih.gov/pubmed/36324799 http://dx.doi.org/10.1101/2022.10.25.22281469 |
Ejemplares similares
-
Patient-specific COVID-19 resource utilization prediction using fusion AI model
por: Tariq, Amara, et al.
Publicado: (2021) -
PATIENT-SPECIFIC COVID-19 RESOURCE UTILIZATION PREDICTION USING FUSION AI MODEL
por: Tariq, Amara, et al.
Publicado: (2021) -
Automatic Classification of Cancer Pathology Reports: A Systematic Review
por: Santos, Thiago, et al.
Publicado: (2022) -
Query bot for retrieving patients’ clinical history: A COVID-19 use-case
por: Wang, Yibo, et al.
Publicado: (2021) -
AI pitfalls and what not to do: mitigating bias in AI
por: Gichoya, Judy Wawira, et al.
Publicado: (2023)