Cargando…
Computationally restoring the potency of a clinical antibody against SARS-CoV-2 Omicron subvariants
The COVID-19 pandemic underscored the promise of monoclonal antibody-based prophylactic and therapeutic drugs(1–3), but also revealed how quickly viral escape can curtail effective options(4,5). With the emergence of the SARS-CoV-2 Omicron variant in late 2021, many clinically used antibody drug pro...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9628197/ https://www.ncbi.nlm.nih.gov/pubmed/36324800 http://dx.doi.org/10.1101/2022.10.21.513237 |
_version_ | 1784823143473348608 |
---|---|
author | Desautels, Thomas A. Arrildt, Kathryn T. Zemla, Adam T. Lau, Edmond Y. Zhu, Fangqiang Ricci, Dante Cronin, Stephanie Zost, Seth J. Binshtein, Elad Scheaffer, Suzanne M. Dadonaite, Bernadeta Petersen, Brenden K. Engdahl, Taylor B. Chen, Elaine Handal, Laura S. Hall, Lynn Goforth, John W. Vashchenko, Denis Nguyen, Sam Weilhammer, Dina R. Lo, Jacky Kai-Yin Rubinfeld, Bonnee Saada, Edwin A. Weisenberger, Tracy Lee, Tek-Hyung Whitener, Bradley Case, James B. Ladd, Alexander Silva, Mary S. Haluska, Rebecca M. Grzesiak, Emilia A. Earnhart, Christopher G. Hopkins, Svetlana Bates, Thomas W. Thackray, Larissa B. Segelke, Brent W. Lillo, Antonietta Maria Sundaram, Shivshankar Bloom, Jesse Diamond, Michael S. Crowe, James E. Carnahan, Robert H. Faissol, Daniel M. |
author_facet | Desautels, Thomas A. Arrildt, Kathryn T. Zemla, Adam T. Lau, Edmond Y. Zhu, Fangqiang Ricci, Dante Cronin, Stephanie Zost, Seth J. Binshtein, Elad Scheaffer, Suzanne M. Dadonaite, Bernadeta Petersen, Brenden K. Engdahl, Taylor B. Chen, Elaine Handal, Laura S. Hall, Lynn Goforth, John W. Vashchenko, Denis Nguyen, Sam Weilhammer, Dina R. Lo, Jacky Kai-Yin Rubinfeld, Bonnee Saada, Edwin A. Weisenberger, Tracy Lee, Tek-Hyung Whitener, Bradley Case, James B. Ladd, Alexander Silva, Mary S. Haluska, Rebecca M. Grzesiak, Emilia A. Earnhart, Christopher G. Hopkins, Svetlana Bates, Thomas W. Thackray, Larissa B. Segelke, Brent W. Lillo, Antonietta Maria Sundaram, Shivshankar Bloom, Jesse Diamond, Michael S. Crowe, James E. Carnahan, Robert H. Faissol, Daniel M. |
author_sort | Desautels, Thomas A. |
collection | PubMed |
description | The COVID-19 pandemic underscored the promise of monoclonal antibody-based prophylactic and therapeutic drugs(1–3), but also revealed how quickly viral escape can curtail effective options(4,5). With the emergence of the SARS-CoV-2 Omicron variant in late 2021, many clinically used antibody drug products lost potency, including Evusheld(™) and its constituent, cilgavimab(4,6). Cilgavimab, like its progenitor COV2-2130, is a class 3 antibody that is compatible with other antibodies in combination(4) and is challenging to replace with existing approaches. Rapidly modifying such high-value antibodies with a known clinical profile to restore efficacy against emerging variants is a compelling mitigation strategy. We sought to redesign COV2-2130 to rescue in vivo efficacy against Omicron BA.1 and BA.1.1 strains while maintaining efficacy against the contemporaneously dominant Delta variant. Here we show that our computationally redesigned antibody, 2130-1-0114-112, achieves this objective, simultaneously increases neutralization potency against Delta and many variants of concern that subsequently emerged, and provides protection in vivo against the strains tested, WA1/2020, BA.1.1, and BA.5. Deep mutational scanning of tens of thousands pseudovirus variants reveals 2130-1-0114-112 improves broad potency without incurring additional escape liabilities. Our results suggest that computational approaches can optimize an antibody to target multiple escape variants, while simultaneously enriching potency. Because our approach is computationally driven, not requiring experimental iterations or pre-existing binding data, it could enable rapid response strategies to address escape variants or pre-emptively mitigate escape vulnerabilities. |
format | Online Article Text |
id | pubmed-9628197 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-96281972022-11-03 Computationally restoring the potency of a clinical antibody against SARS-CoV-2 Omicron subvariants Desautels, Thomas A. Arrildt, Kathryn T. Zemla, Adam T. Lau, Edmond Y. Zhu, Fangqiang Ricci, Dante Cronin, Stephanie Zost, Seth J. Binshtein, Elad Scheaffer, Suzanne M. Dadonaite, Bernadeta Petersen, Brenden K. Engdahl, Taylor B. Chen, Elaine Handal, Laura S. Hall, Lynn Goforth, John W. Vashchenko, Denis Nguyen, Sam Weilhammer, Dina R. Lo, Jacky Kai-Yin Rubinfeld, Bonnee Saada, Edwin A. Weisenberger, Tracy Lee, Tek-Hyung Whitener, Bradley Case, James B. Ladd, Alexander Silva, Mary S. Haluska, Rebecca M. Grzesiak, Emilia A. Earnhart, Christopher G. Hopkins, Svetlana Bates, Thomas W. Thackray, Larissa B. Segelke, Brent W. Lillo, Antonietta Maria Sundaram, Shivshankar Bloom, Jesse Diamond, Michael S. Crowe, James E. Carnahan, Robert H. Faissol, Daniel M. bioRxiv Article The COVID-19 pandemic underscored the promise of monoclonal antibody-based prophylactic and therapeutic drugs(1–3), but also revealed how quickly viral escape can curtail effective options(4,5). With the emergence of the SARS-CoV-2 Omicron variant in late 2021, many clinically used antibody drug products lost potency, including Evusheld(™) and its constituent, cilgavimab(4,6). Cilgavimab, like its progenitor COV2-2130, is a class 3 antibody that is compatible with other antibodies in combination(4) and is challenging to replace with existing approaches. Rapidly modifying such high-value antibodies with a known clinical profile to restore efficacy against emerging variants is a compelling mitigation strategy. We sought to redesign COV2-2130 to rescue in vivo efficacy against Omicron BA.1 and BA.1.1 strains while maintaining efficacy against the contemporaneously dominant Delta variant. Here we show that our computationally redesigned antibody, 2130-1-0114-112, achieves this objective, simultaneously increases neutralization potency against Delta and many variants of concern that subsequently emerged, and provides protection in vivo against the strains tested, WA1/2020, BA.1.1, and BA.5. Deep mutational scanning of tens of thousands pseudovirus variants reveals 2130-1-0114-112 improves broad potency without incurring additional escape liabilities. Our results suggest that computational approaches can optimize an antibody to target multiple escape variants, while simultaneously enriching potency. Because our approach is computationally driven, not requiring experimental iterations or pre-existing binding data, it could enable rapid response strategies to address escape variants or pre-emptively mitigate escape vulnerabilities. Cold Spring Harbor Laboratory 2023-04-24 /pmc/articles/PMC9628197/ /pubmed/36324800 http://dx.doi.org/10.1101/2022.10.21.513237 Text en https://creativecommons.org/licenses/by-nd/4.0/This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, and only so long as attribution is given to the creator. The license allows for commercial use. |
spellingShingle | Article Desautels, Thomas A. Arrildt, Kathryn T. Zemla, Adam T. Lau, Edmond Y. Zhu, Fangqiang Ricci, Dante Cronin, Stephanie Zost, Seth J. Binshtein, Elad Scheaffer, Suzanne M. Dadonaite, Bernadeta Petersen, Brenden K. Engdahl, Taylor B. Chen, Elaine Handal, Laura S. Hall, Lynn Goforth, John W. Vashchenko, Denis Nguyen, Sam Weilhammer, Dina R. Lo, Jacky Kai-Yin Rubinfeld, Bonnee Saada, Edwin A. Weisenberger, Tracy Lee, Tek-Hyung Whitener, Bradley Case, James B. Ladd, Alexander Silva, Mary S. Haluska, Rebecca M. Grzesiak, Emilia A. Earnhart, Christopher G. Hopkins, Svetlana Bates, Thomas W. Thackray, Larissa B. Segelke, Brent W. Lillo, Antonietta Maria Sundaram, Shivshankar Bloom, Jesse Diamond, Michael S. Crowe, James E. Carnahan, Robert H. Faissol, Daniel M. Computationally restoring the potency of a clinical antibody against SARS-CoV-2 Omicron subvariants |
title | Computationally restoring the potency of a clinical antibody against SARS-CoV-2 Omicron subvariants |
title_full | Computationally restoring the potency of a clinical antibody against SARS-CoV-2 Omicron subvariants |
title_fullStr | Computationally restoring the potency of a clinical antibody against SARS-CoV-2 Omicron subvariants |
title_full_unstemmed | Computationally restoring the potency of a clinical antibody against SARS-CoV-2 Omicron subvariants |
title_short | Computationally restoring the potency of a clinical antibody against SARS-CoV-2 Omicron subvariants |
title_sort | computationally restoring the potency of a clinical antibody against sars-cov-2 omicron subvariants |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9628197/ https://www.ncbi.nlm.nih.gov/pubmed/36324800 http://dx.doi.org/10.1101/2022.10.21.513237 |
work_keys_str_mv | AT desautelsthomasa computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT arrildtkathrynt computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT zemlaadamt computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT lauedmondy computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT zhufangqiang computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT riccidante computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT croninstephanie computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT zostsethj computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT binshteinelad computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT scheaffersuzannem computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT dadonaitebernadeta computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT petersenbrendenk computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT engdahltaylorb computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT chenelaine computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT handallauras computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT halllynn computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT goforthjohnw computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT vashchenkodenis computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT nguyensam computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT weilhammerdinar computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT lojackykaiyin computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT rubinfeldbonnee computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT saadaedwina computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT weisenbergertracy computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT leetekhyung computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT whitenerbradley computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT casejamesb computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT laddalexander computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT silvamarys computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT haluskarebeccam computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT grzesiakemiliaa computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT earnhartchristopherg computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT hopkinssvetlana computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT batesthomasw computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT thackraylarissab computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT segelkebrentw computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT lilloantoniettamaria computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT sundaramshivshankar computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT bloomjesse computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT diamondmichaels computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT crowejamese computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT carnahanroberth computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants AT faissoldanielm computationallyrestoringthepotencyofaclinicalantibodyagainstsarscov2omicronsubvariants |