Cargando…
Modeling noisy time-series data of crime with stochastic differential equations
We develop and calibrate stochastic continuous models that capture crime dynamics in the city of Valencia, Spain. From the emergency phone, data corresponding to three crime events, aggressions, stealing and women alarms, are available from the year 2010 until 2020. As the resulting time series, wit...
Autores principales: | Calatayud, Julia, Jornet, Marc, Mateu, Jorge |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9628327/ https://www.ncbi.nlm.nih.gov/pubmed/36340619 http://dx.doi.org/10.1007/s00477-022-02334-8 |
Ejemplares similares
-
Spatio-temporal stochastic differential equations for crime incidence modeling
por: Calatayud, Julia, et al.
Publicado: (2023) -
A stochastic Bayesian bootstrapping model for COVID-19 data
por: Calatayud, Julia, et al.
Publicado: (2022) -
Numerical characterization of noisy fluctuations in two different types of stochastic differential equation models of neural signaling
por: Manninen, Tiina, et al.
Publicado: (2015) -
Neural ordinary differential equations with irregular and noisy data
por: Goyal, Pawan, et al.
Publicado: (2023) -
Benchmarks for identification of ordinary differential equations from time series data
por: Gennemark, Peter, et al.
Publicado: (2009)