Cargando…
Application of Meta-Heuristic Algorithms for Training Neural Networks and Deep Learning Architectures: A Comprehensive Review
The learning process and hyper-parameter optimization of artificial neural networks (ANNs) and deep learning (DL) architectures is considered one of the most challenging machine learning problems. Several past studies have used gradient-based back propagation methods to train DL architectures. Howev...
Autores principales: | Kaveh, Mehrdad, Mesgari, Mohammad Saadi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9628382/ https://www.ncbi.nlm.nih.gov/pubmed/36339645 http://dx.doi.org/10.1007/s11063-022-11055-6 |
Ejemplares similares
-
Spatio-temporal modeling of COVID-19 prevalence and mortality using artificial neural network algorithms
por: Kianfar, Nima, et al.
Publicado: (2022) -
Development a Heuristic Method to Locate and Allocate the Medical Centers to Minimize the Earthquake Relief Operation Time
por: AGHAMOHAMMADI, Hossein, et al.
Publicado: (2013) -
Embedded deep learning: algorithms, architectures and circuits for always-on neural network processing
por: Moons, Bert, et al.
Publicado: (2019) -
Meta-Heuristic Algorithm-Tuned Neural Network for Breast Cancer Diagnosis Using Ultrasound Images
por: A, Ahila, et al.
Publicado: (2022) -
Meta-heuristic and evolutionary algorithms for engineering optimization
por: Bozorg-Haddad, Omid, et al.
Publicado: (2017)