Cargando…
Fuzzy-based hunger games search algorithm for global optimization and feature selection using medical data
Feature selection (FS) is one of the basic data preprocessing steps in data mining and machine learning. It is used to reduce feature size and increase model generalization. In addition to minimizing feature dimensionality, it also enhances classification accuracy and reduces model complexity, which...
Autores principales: | Houssein, Essam H., Hosney, Mosa E., Mohamed, Waleed M., Ali, Abdelmgeid A., Younis, Eman M. G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9628476/ https://www.ncbi.nlm.nih.gov/pubmed/36340595 http://dx.doi.org/10.1007/s00521-022-07916-9 |
Ejemplares similares
-
Hybrid Harris hawks optimization with cuckoo search for drug design and discovery in chemoinformatics
por: Houssein, Essam H., et al.
Publicado: (2020) -
An optimized deep learning architecture for breast cancer diagnosis based on improved marine predators algorithm
por: Houssein, Essam H., et al.
Publicado: (2022) -
An artificial bee bare-bone hunger games search for global optimization and high-dimensional feature selection
por: Chen, Zhiqing, et al.
Publicado: (2023) -
Fuzzy Clustering Algorithm Based on Improved Global Best-Guided Artificial Bee Colony with New Search Probability Model for Image Segmentation
por: Alomoush, Waleed, et al.
Publicado: (2022) -
Improved manta ray foraging optimization for multi-level thresholding using COVID-19 CT images
por: Houssein, Essam H., et al.
Publicado: (2021)