Cargando…
CheXPrune: sparse chest X-ray report generation model using multi-attention and one-shot global pruning
Automatic radiological report generation (ARRG) smoothens the clinical workflow by speeding the report generation task. Recently, various deep neural networks (DNNs) have been used for report generation and have achieved promising results. Despite the impressive results, their deployment remains cha...
Autores principales: | Kaur, Navdeep, Mittal, Ajay |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9628486/ https://www.ncbi.nlm.nih.gov/pubmed/36338854 http://dx.doi.org/10.1007/s12652-022-04454-z |
Ejemplares similares
-
Iteratively Pruned Deep Learning Ensembles for COVID-19 Detection in Chest X-Rays
Publicado: (2020) -
CheSS: Chest X-Ray Pre-trained Model via Self-supervised Contrastive Learning
por: Cho, Kyungjin, et al.
Publicado: (2023) -
CheXaid: deep learning assistance for physician diagnosis of tuberculosis using chest x-rays in patients with HIV
por: Rajpurkar, Pranav, et al.
Publicado: (2020) -
COVID-CheXNet: hybrid deep learning framework for identifying COVID-19 virus in chest X-rays images
por: Al-Waisy, Alaa S., et al.
Publicado: (2020) -
One-shot Cluster-Based Approach for the Detection of COVID–19 from Chest X–ray Images
por: Aradhya, V. N. Manjunath, et al.
Publicado: (2021)