Cargando…
Multi-modality deep forest for hand motion recognition via fusing sEMG and acceleration signals
Bio-signal based hand motion recognition plays a critical role in the tasks of human-machine interaction, such as the natural control of multifunctional prostheses. Although a large number of classification technologies have been taken to improve the motion recognition accuracy, it is still a challe...
Autores principales: | Fang, Yinfeng, Lu, Huiqiao, Liu, Han |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9628499/ https://www.ncbi.nlm.nih.gov/pubmed/36339898 http://dx.doi.org/10.1007/s13042-022-01687-4 |
Ejemplares similares
-
sEMG-Based Hand Gesture Recognition Using Binarized Neural Network
por: Kang, Soongyu, et al.
Publicado: (2023) -
An sEMG-Based Human-Exoskeleton Interface Fusing Convolutional Neural Networks With Hand-Crafted Features
por: Yang, Xiao, et al.
Publicado: (2022) -
A novel hand gesture recognition method based on 2-channel sEMG
por: Yu, Hailong, et al.
Publicado: (2018) -
sEMG-Based Hand Posture Recognition and Visual Feedback Training for the Forearm Amputee
por: Kim, Jongman, et al.
Publicado: (2022) -
Dataset for multi-channel surface electromyography (sEMG) signals of hand gestures
por: Ozdemir, Mehmet Akif, et al.
Publicado: (2022)