Cargando…

ODP571 Blockade of ErbB-2 Nuclear Function Induces the Interferon Signaling Pathway in Breast Cancer Models Resistant to Trastuzumab

ErbB-2, a member of ErbB family of receptor tyrosine kinases, is a key oncogenic driver in breast cancer. Despite clinical efficiency of ErbB-2-targeted therapies (trastuzumab, TZ), resistance to drugs is a major issue in the clinic. While ErbB-2 is mainly a plasma membrane-bound receptor, it also m...

Descripción completa

Detalles Bibliográficos
Autores principales: Elizalde, Patricia V, Cordo Russo, Rosalia, Madera, Santiago, Merin, Sharon S, Chervo, María F, Ebrahimie, Esmaeil, Selth, Luke, Chiauzzi, Violeta A, Dupont, Agustina, Barchuk, Sabrina, Figurelli, Silvina, Lopez Della Vecchia, Daniel, Guzmán, Pablo, Roa, Juan C, Levit, Claudio, Lebersztein, Gabriel, Anfuso, Fabiana, Proietti, Cecilia J, Schillaci, Roxana, Hickey, Theresa E, Tilley, Wayne D
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9628591/
http://dx.doi.org/10.1210/jendso/bvac150.1817
Descripción
Sumario:ErbB-2, a member of ErbB family of receptor tyrosine kinases, is a key oncogenic driver in breast cancer. Despite clinical efficiency of ErbB-2-targeted therapies (trastuzumab, TZ), resistance to drugs is a major issue in the clinic. While ErbB-2 is mainly a plasma membrane-bound receptor, it also migrates to the nucleus (NErbB-2) where it can act as a transcription factor or coactivator. We previously reported that NErbB-2 is a major proliferation driver in TZ-resistant breast cancer. To investigate the NErbB-2 dependent transcriptome, RNAseq was performed using a TZ-resistant breast cancer model (JIMT-1 cells) with high constitutive levels of NErbB-2. JIMT-1 cells were transfected with an ErbB-2 nuclear localization domain mutant (hErbB-2ΔNLS), which also acts as a dominant-negative inhibitor of endogenous NErbB-2 migration. Exclusion of ErbB-2 from the nucleus resulted in up-regulation of 280 genes and down-regulation of 33 genes. Functional analysis revealed that NErbB-2 blockade enriched the expression of genes involved in type-I interferon (IFN) signaling pathway. IFNB1 and its downstream effectors OAS2 and TRIM22 were among the top up-regulated genes. In an independent breast cancer model (i. e., HCC-1569 cells), exclusion of NErbB-2 from the nucleus also induced expression of these genes. Blockade of NErbB-2 localization by injection of the hErbB-2ΔNLS mutant into JIMT-1 tumor xenografts significantly inhibited in vivo tumor growth and induced mRNA expression of IFNB1, OAS2 and TRIM22. Interestingly, blockade of NErbB-2 localization by treatment with Retro-2, an inhibitor of the retrograde transport, showed similar effects consistent with modulation of the IFN signaling pathway by NErbB-2. Bioinformatic analyses showed that both the promoter and the coding region of the IFNB1 gene contain ErbB-2 associated sequences (HAS sites). ChIP-PCR analyses revealed ErbB-2 recruitment to the HAS sites of the IFNB1 promoter and coding regions in normal growth conditions. Transfection of JIMT-1 cells with the hErbB-2ΔNLS mutant abolished the recruitment of ErbB-2 at the IFNB1 gene and also caused an increase in histone H4 acetylation, a marker of active gene transcription. NErbB-2 immunostaining in a cohort of 32 primary invasive ErbB-2-positive breast carcinomas treated with TZ revealed that NErbB-2 expression correlated with a poor disease-free survival. While this cohort is small, the findings suggest that NErbB-2 could be used as a biomarker of poor response to TZ in the clinic. In summary, our findings indicate that NErbB-2 drives the growth of TZ-resistant breast cancer cells via transcriptional repression of the IFNB1 signaling pathway, and highlight NErbB-2 as a therapeutic target and biomarker in TZ-resistant breast cancer. Presentation: No date and time listed