Cargando…

Inhibition of Pathogenic Bacteria and Fungi by Natural Phenoxazinone from Octopus Ommochrome Pigments

Cephalopods, in particular octopus (Octopus vulgaris), have the ability to alter their appearance or body pattern by showing a wide range of camouflage by virtue of their chromatophores, which contain nanostructured granules of ommochrome pigments. Recently, the antioxidant and antimicrobial activit...

Descripción completa

Detalles Bibliográficos
Autores principales: Lewis-Luján, Lidianys María, Rosas-Burgos, Ema Carina, Ezquerra-Brauer, Josafat Marina, Burboa-Zazueta, María Guadalupe, Assanga, Simon Bernard Iloki, del Castillo-Castro, Teresa, Penton, Giselle, Plascencia-Jatomea, Maribel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Society for Microbiology and Biotechnology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9628961/
https://www.ncbi.nlm.nih.gov/pubmed/35909165
http://dx.doi.org/10.4014/jmb.2206.06043
Descripción
Sumario:Cephalopods, in particular octopus (Octopus vulgaris), have the ability to alter their appearance or body pattern by showing a wide range of camouflage by virtue of their chromatophores, which contain nanostructured granules of ommochrome pigments. Recently, the antioxidant and antimicrobial activities of ommochromes have become of great interest; therefore, in this study, the pH-dependent redox effect of the extraction solvent on the antioxidant potential and the structural characterization of the pigments were evaluated. Cell viability was determined by the microdilution method in broth by turbidity, MTT, resazurin, as well as fluorescence microscopy kit assays. A Live/Dead Double Staining Kit and an ROS Kit were used to elucidate the possible inhibitory mechanisms of ommochromes against bacterial and fungal strains. The results obtained revealed that the redox state alters the color changes of the ommochromes and is dependent on the pH in the extraction solvent. Natural phenoxazinone (ommochromes) is moderately toxic to the pathogens Staphylococcus aureus, Bacillus subtilis, Salmonella Typhimurium and Candida albicans, while the species Pseudomonas aeruginosa and Pseudomonas fluorescens, and the filamentous fungi Aspergillus parasiticus, Alternaria spp. and Fusarium verticillioides, were tolerant to these pigments. UV/visible spectral scanning and Fourier- transform infrared spectroscopy (FTIR) suggest the presence of reduced ommatin in methanol/ HCl extract with high intrinsic fluorescence.