Cargando…
Predicting Emerging Themes in Rapidly Expanding COVID-19 Literature With Unsupervised Word Embeddings and Machine Learning: Evidence-Based Study
BACKGROUND: Evidence from peer-reviewed literature is the cornerstone for designing responses to global threats such as COVID-19. In massive and rapidly growing corpuses, such as COVID-19 publications, assimilating and synthesizing information is challenging. Leveraging a robust computational pipeli...
Autores principales: | Pal, Ridam, Chopra, Harshita, Awasthi, Raghav, Bandhey, Harsh, Nagori, Aditya, Sethi, Tavpritesh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9629347/ https://www.ncbi.nlm.nih.gov/pubmed/36040993 http://dx.doi.org/10.2196/34067 |
Ejemplares similares
-
Mining Trends of COVID-19 Vaccine Beliefs on Twitter With Lexical Embeddings: Longitudinal Observational Study
por: Chopra, Harshita, et al.
Publicado: (2023) -
Early Prediction of Hemodynamic Shock in Pediatric Intensive Care Units With Deep Learning on Thermal Videos
por: Vats, Vanshika, et al.
Publicado: (2022) -
Genomic Surveillance of COVID-19 Variants With Language Models and Machine Learning
por: Nagpal, Sargun, et al.
Publicado: (2022) -
Early prediction of hypothermia in pediatric intensive care units using machine learning
por: Singh, Pradeep, et al.
Publicado: (2022) -
Predicting Hemodynamic Shock from Thermal Images using Machine Learning
por: Nagori, Aditya, et al.
Publicado: (2019)