Cargando…
Waxy is an important factor for grain fissure resistance and head rice yield as revealed by a genome-wide association study
Head rice yield (HRY) is an essential quality trait, and is sensitive to environmental stresses during the grain-filling, harvest, and postharvest stages. It is therefore important for rice production and global food security to select for superior HRY traits; however, the molecular basis of this tr...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9629786/ https://www.ncbi.nlm.nih.gov/pubmed/36052968 http://dx.doi.org/10.1093/jxb/erac330 |
_version_ | 1784823467739185152 |
---|---|
author | Deng, Zhuyun Liu, Yuxia Gong, Chunyan Chen, Bingtang Wang, Tai |
author_facet | Deng, Zhuyun Liu, Yuxia Gong, Chunyan Chen, Bingtang Wang, Tai |
author_sort | Deng, Zhuyun |
collection | PubMed |
description | Head rice yield (HRY) is an essential quality trait, and is sensitive to environmental stresses during the grain-filling, harvest, and postharvest stages. It is therefore important for rice production and global food security to select for superior HRY traits; however, the molecular basis of this trait remains unknown. Using diverse rice germplasm material, we performed a genome-wide association study of grain fissure resistance (GFR), the phenotype most associated with HRY, and found that the granule-bound starch synthase I gene Waxy is an important gene controlling GFR. Analysis of near-isogenic lines demonstrated that genetic variations in Waxy conferred different levels of tolerance to fissuring in grains. The null allele wx resulted in the highest GFR, while alleles that increased amylose synthesis reduced GFR. Increases in amylose content led to increases in the ratio of the widths of the amorphous layer to the semi-crystalline layer of the starch granules, and also to increased occurrence of chalkiness. The layer structure determined GFR by affecting the degree of swelling of granules in response to moisture, and chalkiness acted as an accelerator of moisture infiltration to rapidly increase the number of swelling granules. Our study reveals the molecular basis of GFR and HRY, thus opening the door for further understanding of the molecular networks of GFR and HRY. |
format | Online Article Text |
id | pubmed-9629786 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-96297862022-11-04 Waxy is an important factor for grain fissure resistance and head rice yield as revealed by a genome-wide association study Deng, Zhuyun Liu, Yuxia Gong, Chunyan Chen, Bingtang Wang, Tai J Exp Bot Research Papers Head rice yield (HRY) is an essential quality trait, and is sensitive to environmental stresses during the grain-filling, harvest, and postharvest stages. It is therefore important for rice production and global food security to select for superior HRY traits; however, the molecular basis of this trait remains unknown. Using diverse rice germplasm material, we performed a genome-wide association study of grain fissure resistance (GFR), the phenotype most associated with HRY, and found that the granule-bound starch synthase I gene Waxy is an important gene controlling GFR. Analysis of near-isogenic lines demonstrated that genetic variations in Waxy conferred different levels of tolerance to fissuring in grains. The null allele wx resulted in the highest GFR, while alleles that increased amylose synthesis reduced GFR. Increases in amylose content led to increases in the ratio of the widths of the amorphous layer to the semi-crystalline layer of the starch granules, and also to increased occurrence of chalkiness. The layer structure determined GFR by affecting the degree of swelling of granules in response to moisture, and chalkiness acted as an accelerator of moisture infiltration to rapidly increase the number of swelling granules. Our study reveals the molecular basis of GFR and HRY, thus opening the door for further understanding of the molecular networks of GFR and HRY. Oxford University Press 2022-09-02 /pmc/articles/PMC9629786/ /pubmed/36052968 http://dx.doi.org/10.1093/jxb/erac330 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Experimental Biology. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Papers Deng, Zhuyun Liu, Yuxia Gong, Chunyan Chen, Bingtang Wang, Tai Waxy is an important factor for grain fissure resistance and head rice yield as revealed by a genome-wide association study |
title |
Waxy is an important factor for grain fissure resistance and head rice yield as revealed by a genome-wide association study |
title_full |
Waxy is an important factor for grain fissure resistance and head rice yield as revealed by a genome-wide association study |
title_fullStr |
Waxy is an important factor for grain fissure resistance and head rice yield as revealed by a genome-wide association study |
title_full_unstemmed |
Waxy is an important factor for grain fissure resistance and head rice yield as revealed by a genome-wide association study |
title_short |
Waxy is an important factor for grain fissure resistance and head rice yield as revealed by a genome-wide association study |
title_sort | waxy is an important factor for grain fissure resistance and head rice yield as revealed by a genome-wide association study |
topic | Research Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9629786/ https://www.ncbi.nlm.nih.gov/pubmed/36052968 http://dx.doi.org/10.1093/jxb/erac330 |
work_keys_str_mv | AT dengzhuyun waxyisanimportantfactorforgrainfissureresistanceandheadriceyieldasrevealedbyagenomewideassociationstudy AT liuyuxia waxyisanimportantfactorforgrainfissureresistanceandheadriceyieldasrevealedbyagenomewideassociationstudy AT gongchunyan waxyisanimportantfactorforgrainfissureresistanceandheadriceyieldasrevealedbyagenomewideassociationstudy AT chenbingtang waxyisanimportantfactorforgrainfissureresistanceandheadriceyieldasrevealedbyagenomewideassociationstudy AT wangtai waxyisanimportantfactorforgrainfissureresistanceandheadriceyieldasrevealedbyagenomewideassociationstudy |