Cargando…
Clustering Sparse Data With Feature Correlation With Application to Discover Subtypes in Cancer
In this paper, given data with high-dimensional features, we study this problem of how to calculate the similarity between two samples by considering feature interaction network, where a feature interaction network represents the relationship between features. This is different from some traditional...
Autores principales: | QIANG, JIPENG, DING, WEI, KUIJJER, MARIEKE, QUACKENBUSH, JOHN, CHEN, PING |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9629797/ https://www.ncbi.nlm.nih.gov/pubmed/36329870 http://dx.doi.org/10.1109/access.2020.2982569 |
Ejemplares similares
-
Cancer subtype identification using somatic mutation data
por: Kuijjer, Marieke Lydia, et al.
Publicado: (2018) -
Tissue-aware RNA-Seq processing and normalization for heterogeneous and sparse data
por: Paulson, Joseph N., et al.
Publicado: (2017) -
lionessR: single sample network inference in R
por: Kuijjer, Marieke L, et al.
Publicado: (2019) -
Information-incorporated sparse convex clustering for disease subtyping
por: Zhang, Xiaoyu, et al.
Publicado: (2023) -
Nongenic cancer-risk SNPs affect oncogenes, tumour-suppressor genes, and immune function
por: Fagny, Maud, et al.
Publicado: (2019)