Cargando…
Clinical variable-based cluster analysis identifies novel subgroups with a distinct genetic signature, lipidomic pattern and cardio-renal risks in Asian patients with recent-onset type 2 diabetes
AIMS/HYPOTHESIS: We sought to subtype South East Asian patients with type 2 diabetes by de novo cluster analysis on clinical variables, and to determine whether the novel subgroups carry distinct genetic and lipidomic features as well as differential cardio-renal risks. METHODS: Analysis by k-means...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9630229/ https://www.ncbi.nlm.nih.gov/pubmed/35763031 http://dx.doi.org/10.1007/s00125-022-05741-2 |
Sumario: | AIMS/HYPOTHESIS: We sought to subtype South East Asian patients with type 2 diabetes by de novo cluster analysis on clinical variables, and to determine whether the novel subgroups carry distinct genetic and lipidomic features as well as differential cardio-renal risks. METHODS: Analysis by k-means algorithm was performed in 687 participants with recent-onset diabetes in Singapore. Genetic risk for beta cell dysfunction was assessed by polygenic risk score. We used a discovery–validation approach for the lipidomics study. Risks for cardio-renal complications were studied by survival analysis. RESULTS: Cluster analysis identified three novel diabetic subgroups, i.e. mild obesity-related diabetes (MOD, 45%), mild age-related diabetes with insulin insufficiency (MARD-II, 36%) and severe insulin-resistant diabetes with relative insulin insufficiency (SIRD-RII, 19%). Compared with the MOD subgroup, MARD-II had a higher polygenic risk score for beta cell dysfunction. The SIRD-RII subgroup had higher levels of sphingolipids (ceramides and sphingomyelins) and glycerophospholipids (phosphatidylethanolamine and phosphatidylcholine), whereas the MARD-II subgroup had lower levels of sphingolipids and glycerophospholipids but higher levels of lysophosphatidylcholines. Over a median of 7.3 years follow-up, the SIRD-RII subgroup had the highest risks for incident heart failure and progressive kidney disease, while the MARD-II subgroup had moderately elevated risk for kidney disease progression. CONCLUSIONS/INTERPRETATION: Cluster analysis on clinical variables identified novel subgroups with distinct genetic, lipidomic signatures and varying cardio-renal risks in South East Asian participants with type 2 diabetes. Our study suggests that this easily actionable approach may be adapted in other ethnic populations to stratify the heterogeneous type 2 diabetes population for precision medicine. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains peer-reviewed but unedited supplementary material available at 10.1007/s00125-022-05741-2. |
---|