Cargando…
Weighted average ensemble-based semantic segmentation in biological electron microscopy images
Semantic segmentation of electron microscopy images using deep learning methods is a valuable tool for the detailed analysis of organelles and cell structures. However, these methods require a large amount of labeled ground truth data that is often unavailable. To address this limitation, we present...
Autores principales: | Shaga Devan, Kavitha, Kestler, Hans A., Read, Clarissa, Walther, Paul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9630254/ https://www.ncbi.nlm.nih.gov/pubmed/35988009 http://dx.doi.org/10.1007/s00418-022-02148-3 |
Ejemplares similares
-
The Weighted‐Average Lagged Ensemble
por: DelSole, T., et al.
Publicado: (2017) -
Materials swelling revealed through automated semantic segmentation of cavities in electron microscopy images
por: Jacobs, Ryan, et al.
Publicado: (2023) -
Efficient semi-supervised semantic segmentation of electron microscopy cancer images with sparse annotations
por: Pagano, Lucas, et al.
Publicado: (2023) -
On cross-correlations, averages and noise in electron microscopy
por: Radermacher, Michael, et al.
Publicado: (2019) -
Weighted Average Ensemble Deep Learning Model for Stratification of Brain Tumor in MRI Images
por: Anand, Vatsala, et al.
Publicado: (2023)