Cargando…

Material gradients in gastropod radulae and their biomechanical significance: a combined approach on the paludomid Lavigeria grandis

The radula, a chitinous membrane spiked with teeth, is the molluscan autapomorphy for the gathering and processing of food. The teeth, as actual interfaces between the organism and the ingesta, act as load transmitting regions and have to withstand high stresses during foraging — without structural...

Descripción completa

Detalles Bibliográficos
Autores principales: Krings, Wencke, Matsumura, Yoko, Brütt, Jan-Ole, Gorb, Stanislav N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9630255/
https://www.ncbi.nlm.nih.gov/pubmed/36322292
http://dx.doi.org/10.1007/s00114-022-01822-9
Descripción
Sumario:The radula, a chitinous membrane spiked with teeth, is the molluscan autapomorphy for the gathering and processing of food. The teeth, as actual interfaces between the organism and the ingesta, act as load transmitting regions and have to withstand high stresses during foraging — without structural failure or high degrees of wear. Mechanisms contributing to this were studied previously in paludomid gastropods from Lake Tanganyika. For some species, gradients in hardness and Young’s modulus along the teeth were detected, enabling the bending and relying of teeth onto the next row, distributing the stresses more equally. The here presented study on one of them — Lavigeria grandis — aims at shedding light on the origin of these functional gradients. The mechanical properties were identified by nanoindentation technique and compared to the elemental composition, determined by elemental dispersive X-ray spectroscopy (EDX, EDS). This was done for the complete radular (mature and immature tooth rows), resulting in overall 236 EDX and 700 nanoindentation measurements. Even though teeth showed regional differences in elemental composition, we could not correlate the mechanical gradients with the elemental proportions. By applying confocal laser scanning microscopy (CLSM), we were finally able to relate the mechanical properties with the degree of tanning. CLSM is a common technique used on arthropod cuticle, but was never applied on radular teeth before. In general, we found that nanoindentation and CLSM techniques complement one another, as for example, CLSM is capable of revealing heterogeneities in material or micro-gradients, which leads to a better understanding of the functionalities of biological materials and structures. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00114-022-01822-9.