Cargando…

Photoacoustic detection of SARS-CoV-2 spike N501Y single-nucleotide polymorphism based on branched rolling circle amplification

Rapid and accurate diagnosis of SARS-CoV-2 single-nucleotide variations is an urgent need for the initial detection of local circulation and monitoring the alternation of dominant variant. In this proof-of-concept study, a homogeneous and isothermal photoacoustic biosensor is demonstrated for rapid...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiao, Jiaying, Yuan, Chuqi, Ding, Mingming, Hu, Wei, Hu, Zhengwen, Tian, Bo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9630300/
http://dx.doi.org/10.1016/j.talanta.2022.124047
Descripción
Sumario:Rapid and accurate diagnosis of SARS-CoV-2 single-nucleotide variations is an urgent need for the initial detection of local circulation and monitoring the alternation of dominant variant. In this proof-of-concept study, a homogeneous and isothermal photoacoustic biosensor is demonstrated for rapid molecular amplification and detection of a synthetic DNA corresponding to SARS-CoV-2 spike N501Y. Branched rolling circle amplification produces single-stranded amplicons that can aggregate detection probe-modified AuNPs, which induces a strong photoacoustic signal at 640 nm due to both the surface plasmon resonance shift and the size-dependent effect of laser-induced nanobubbles, achieving a sub-femtomolar detection limit within a total assay time of 80 min. The limit of detection can be kept when measuring 5% serum samples. Moreover, the proposed biosensor is highly specific for single-nucleotide polymorphism discrimination and robust against background DNA.