Cargando…
An integrated LSTM-HeteroRGNN model for interpretable opioid overdose risk prediction
Opioid overdose (OD) has become a leading cause of accidental death in the United States, and overdose deaths reached a record high during the COVID-19 pandemic. Combating the opioid crisis requires targeting high-need populations by identifying individuals at risk of OD. While deep learning emerges...
Autores principales: | Dong, Xinyu, Wong, Rachel, Lyu, Weimin, Abell-Hart, Kayley, Deng, Jianyuan, Liu, Yinan, Hajagos, Janos G., Rosenthal, Richard N., Chen, Chao, Wang, Fusheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9630306/ https://www.ncbi.nlm.nih.gov/pubmed/36628797 http://dx.doi.org/10.1016/j.artmed.2022.102439 |
Ejemplares similares
-
A Large-Scale Observational Study on the Temporal Trends and Risk Factors of Opioid Overdose: Real-World Evidence for Better Opioids
por: Deng, Jianyuan, et al.
Publicado: (2021) -
Where Opioid Overdose Patients Live Far From Treatment: Geospatial Analysis of Underserved Populations in New York State
por: Abell-Hart, Kayley, et al.
Publicado: (2022) -
Detecting Miscoded Diabetes Diagnosis Codes in Electronic Health Records for Quality Improvement: Temporal Deep Learning Approach
por: Rashidian, Sina, et al.
Publicado: (2020) -
Association of Opioid Use Disorder With 2016 Presidential Voting Patterns: Cross-sectional Study in New York State at Census Tract Level
por: Xiang, Anthony, et al.
Publicado: (2021) -
Investigation of commonly used aortic aneurysm growth rate metrics: Comparing their suitability for clinical and research applications
por: Abell-Hart, Kayley, et al.
Publicado: (2023)