Cargando…
Deep learning empowered volume delineation of whole-body organs-at-risk for accelerated radiotherapy
In radiotherapy for cancer patients, an indispensable process is to delineate organs-at-risk (OARs) and tumors. However, it is the most time-consuming step as manual delineation is always required from radiation oncologists. Herein, we propose a lightweight deep learning framework for radiotherapy t...
Autores principales: | Shi, Feng, Hu, Weigang, Wu, Jiaojiao, Han, Miaofei, Wang, Jiazhou, Zhang, Wei, Zhou, Qing, Zhou, Jingjie, Wei, Ying, Shao, Ying, Chen, Yanbo, Yu, Yue, Cao, Xiaohuan, Zhan, Yiqiang, Zhou, Xiang Sean, Gao, Yaozong, Shen, Dinggang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9630370/ https://www.ncbi.nlm.nih.gov/pubmed/36323677 http://dx.doi.org/10.1038/s41467-022-34257-x |
Ejemplares similares
-
Fast and low-dose medical imaging generation empowered by hybrid deep-learning and iterative reconstruction
por: Liao, Shu, et al.
Publicado: (2023) -
Is internal target volume accurate for dose evaluation in lung cancer stereotactic body radiotherapy?
por: Peng, Jiayuan, et al.
Publicado: (2016) -
Computing infection distributions and longitudinal evolution patterns in lung CT images
por: Gu, Dongdong, et al.
Publicado: (2021) -
Target volume delineation for radiotherapy of meningiomas: an ANOCEF consensus guideline
por: Martz, Nicolas, et al.
Publicado: (2023) -
Unraveling the patterns and pathways of local recurrence of nasopharyngeal carcinoma: evidence for individualized clinical target volume delineation
por: Ou, Xiaomin, et al.
Publicado: (2023)