Cargando…

Neuroprotective metabolites via fungal biotransformation of a novel sapogenin, cyclocephagenol

Cyclocephagenol (1), a novel cycloartane-type sapogenin with tetrahydropyran unit, is only encountered in Astragalus species. This rare sapogenin has never been a topic of biological activity or modification studies. The objectives of this study were; (i) to perform microbial transformation studies...

Descripción completa

Detalles Bibliográficos
Autores principales: Küçüksolak, Melis, Üner, Göklem, Ballar Kırmızıbayrak, Petek, Bedir, Erdal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9630500/
https://www.ncbi.nlm.nih.gov/pubmed/36323752
http://dx.doi.org/10.1038/s41598-022-22799-5
Descripción
Sumario:Cyclocephagenol (1), a novel cycloartane-type sapogenin with tetrahydropyran unit, is only encountered in Astragalus species. This rare sapogenin has never been a topic of biological activity or modification studies. The objectives of this study were; (i) to perform microbial transformation studies on cyclocephagenol (1) using Astragalus endophyte, Alternaria eureka 1E1BL1, followed by isolation and structural characterization of the metabolites; (ii) to investigate neuroprotective activities of the metabolites; (iii) to understand structure–activity relationships towards neuroprotection. The microbial transformation of cyclocephagenol (1) using Alternaria eureka resulted in the production of twenty-one (2–22) previously undescribed metabolites. Oxidation, monooxygenation, dehydration, methyl migration, epoxidation, and ring expansion reactions were observed on the triterpenoid skeleton. Structures of the compounds were established by 1D-, 2D-NMR, and HR-MS analyses. The neuroprotective activities of metabolites and parent compound (1) were evaluated against H(2)O(2)-induced cell injury. The structure–activity relationship (SAR) was established, and the results revealed that 1 and several other metabolites had potent neuroprotective activity. Further studies revealed that selected compounds reduced the amount of ROS and preserved the integrity of the mitochondrial membrane. This is the first report of microbial transformation of cyclocephagenol (1).