Cargando…
Self-supervised machine learning for live cell imagery segmentation
Segmenting single cells is a necessary process for extracting quantitative data from biological microscopy imagery. The past decade has seen the advent of machine learning (ML) methods to aid in this process, the overwhelming majority of which fall under supervised learning (SL) which requires vast...
Autores principales: | Robitaille, Michael C., Byers, Jeff M., Christodoulides, Joseph A., Raphael, Marc P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9630527/ https://www.ncbi.nlm.nih.gov/pubmed/36323790 http://dx.doi.org/10.1038/s42003-022-04117-x |
Ejemplares similares
-
Robust optical flow algorithm for general single cell segmentation
por: Robitaille, Michael C., et al.
Publicado: (2022) -
Supervised and Weakly Supervised Deep Learning for Segmentation and Counting of Cotton Bolls Using Proximal Imagery
por: Adke, Shrinidhi, et al.
Publicado: (2022) -
Semi-supervised Learning for Weed and Crop Segmentation Using UAV Imagery
por: Nong, Chunshi, et al.
Publicado: (2022) -
Nanoplasmonic pillars engineered for single exosome detection
por: Raghu, Deepa, et al.
Publicado: (2018) -
Self-supervised learning for using overhead imagery as maps in outdoor range sensor localization
por: Tang, Tim Y., et al.
Publicado: (2021)