Cargando…

Protocol for CAROM: A machine learning tool to predict post-translational regulation from metabolic signatures

This protocol describes CAROM, a computational tool that combines genome-scale metabolic networks (GEMs) and machine learning to identify enzyme targets of post-translational modifications (PTMs). Condition-specific enzyme and reaction properties are used to predict targets of phosphorylation and ac...

Descripción completa

Detalles Bibliográficos
Autores principales: Smith, Kirk, Rhoads, Nicole, Chandrasekaran, Sriram
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9630780/
https://www.ncbi.nlm.nih.gov/pubmed/36340881
http://dx.doi.org/10.1016/j.xpro.2022.101799
Descripción
Sumario:This protocol describes CAROM, a computational tool that combines genome-scale metabolic networks (GEMs) and machine learning to identify enzyme targets of post-translational modifications (PTMs). Condition-specific enzyme and reaction properties are used to predict targets of phosphorylation and acetylation in multiple organisms. CAROM is influenced by the accuracy of GEMs and associated flux-balance analysis (FBA), which generate the inputs of the model. We demonstrate the protocol using multi-omics data from E. coli. For complete details on the use and execution of this protocol, please refer to Smith et al. (2022).