Cargando…
Protocol for CAROM: A machine learning tool to predict post-translational regulation from metabolic signatures
This protocol describes CAROM, a computational tool that combines genome-scale metabolic networks (GEMs) and machine learning to identify enzyme targets of post-translational modifications (PTMs). Condition-specific enzyme and reaction properties are used to predict targets of phosphorylation and ac...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9630780/ https://www.ncbi.nlm.nih.gov/pubmed/36340881 http://dx.doi.org/10.1016/j.xpro.2022.101799 |
Sumario: | This protocol describes CAROM, a computational tool that combines genome-scale metabolic networks (GEMs) and machine learning to identify enzyme targets of post-translational modifications (PTMs). Condition-specific enzyme and reaction properties are used to predict targets of phosphorylation and acetylation in multiple organisms. CAROM is influenced by the accuracy of GEMs and associated flux-balance analysis (FBA), which generate the inputs of the model. We demonstrate the protocol using multi-omics data from E. coli. For complete details on the use and execution of this protocol, please refer to Smith et al. (2022). |
---|