Cargando…
Protocol for CAROM: A machine learning tool to predict post-translational regulation from metabolic signatures
This protocol describes CAROM, a computational tool that combines genome-scale metabolic networks (GEMs) and machine learning to identify enzyme targets of post-translational modifications (PTMs). Condition-specific enzyme and reaction properties are used to predict targets of phosphorylation and ac...
Autores principales: | Smith, Kirk, Rhoads, Nicole, Chandrasekaran, Sriram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9630780/ https://www.ncbi.nlm.nih.gov/pubmed/36340881 http://dx.doi.org/10.1016/j.xpro.2022.101799 |
Ejemplares similares
-
COVID-19-associated rhino-orbital mucormycosis (CAROM)—a case report
por: Sethi, Humsheer Singh, et al.
Publicado: (2021) -
Metabolic signatures of regulation by phosphorylation and acetylation
por: Smith, Kirk, et al.
Publicado: (2022) -
A flux-based machine learning model to simulate the impact of pathogen metabolic heterogeneity on drug interactions
por: Chung, Carolina H, et al.
Publicado: (2022) -
Protocol for the prediction, interpretation, and mutation evaluation of post-translational modification using MIND-S
por: Yan, Yu, et al.
Publicado: (2023) -
Unified machine learning protocol for copolymer structure-property predictions
por: Tao, Lei, et al.
Publicado: (2022)