Cargando…
Theory and performance of substitution models for estimating relative causal effects in nutritional epidemiology
BACKGROUND: Estimating relative causal effects (i.e., “substitution effects”) is a common aim of nutritional research. In observational data, this is usually attempted using 1 of 2 statistical modeling approaches: the leave-one-out model and the energy partition model. Despite their widespread use,...
Autores principales: | Tomova, Georgia D, Gilthorpe, Mark S, Tennant, Peter W G |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9630885/ https://www.ncbi.nlm.nih.gov/pubmed/36223891 http://dx.doi.org/10.1093/ajcn/nqac188 |
Ejemplares similares
-
Adjustment for energy intake in nutritional research: a causal inference perspective
por: Tomova, Georgia D, et al.
Publicado: (2021) -
Estimating the effects of lockdown timing on COVID-19 cases and deaths in England: A counterfactual modelling study
por: Arnold, Kellyn F., et al.
Publicado: (2022) -
Analyses of ‘change scores’ do not estimate causal effects in observational data
por: Tennant, Peter W G, et al.
Publicado: (2021) -
A causal inference perspective on the analysis of compositional data
por: Arnold, Kellyn F, et al.
Publicado: (2020) -
Analysing trajectories of a longitudinal exposure: A causal perspective on common methods in lifecourse research
por: Gadd, Sarah C., et al.
Publicado: (2019)