Cargando…
Exploring Physics of Ferroelectric Domain Walls in Real Time: Deep Learning Enabled Scanning Probe Microscopy
The functionality of ferroelastic domain walls in ferroelectric materials is explored in real‐time via the in situ implementation of computer vision algorithms in scanning probe microscopy (SPM) experiment. The robust deep convolutional neural network (DCNN) is implemented based on a deep residual l...
Autores principales: | Liu, Yongtao, Kelley, Kyle P., Funakubo, Hiroshi, Kalinin, Sergei V., Ziatdinov, Maxim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9631058/ https://www.ncbi.nlm.nih.gov/pubmed/36065001 http://dx.doi.org/10.1002/advs.202203957 |
Ejemplares similares
-
Autonomous scanning probe microscopy with hypothesis learning: Exploring the physics of domain switching in ferroelectric materials
por: Liu, Yongtao, et al.
Publicado: (2023) -
Explainability and human intervention in autonomous scanning probe microscopy
por: Liu, Yongtao, et al.
Publicado: (2023) -
Exploring physics of ferroelectric domain walls via Bayesian analysis of atomically resolved STEM data
por: Nelson, Christopher T., et al.
Publicado: (2020) -
Physics Discovery in Nanoplasmonic Systems via Autonomous Experiments in Scanning Transmission Electron Microscopy
por: Roccapriore, Kevin M., et al.
Publicado: (2022) -
Building and exploring libraries of atomic defects in graphene: Scanning transmission electron and scanning tunneling microscopy study
por: Ziatdinov, Maxim, et al.
Publicado: (2019)