Cargando…
Epitope length variants balance protective immune responses and viral escape in HIV-1 infection
Cytotoxic T lymphocyte (CTL) and natural killer (NK) cell responses to a single optimal 10-mer epitope (KK10) in the human immunodeficiency virus type-1 (HIV-1) protein p24Gag are associated with enhanced immune control in patients expressing human leukocyte antigen (HLA)-B(∗)27:05. We find that pro...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9631117/ https://www.ncbi.nlm.nih.gov/pubmed/35235807 http://dx.doi.org/10.1016/j.celrep.2022.110449 |
_version_ | 1784823753600925696 |
---|---|
author | Pymm, Phillip Tenzer, Stefan Wee, Edmund Weimershaus, Mirjana Burgevin, Anne Kollnberger, Simon Gerstoft, Jan Josephs, Tracy M. Ladell, Kristin McLaren, James E. Appay, Victor Price, David A. Fugger, Lars Bell, John I. Schild, Hansjörg van Endert, Peter Harkiolaki, Maria Iversen, Astrid K.N. |
author_facet | Pymm, Phillip Tenzer, Stefan Wee, Edmund Weimershaus, Mirjana Burgevin, Anne Kollnberger, Simon Gerstoft, Jan Josephs, Tracy M. Ladell, Kristin McLaren, James E. Appay, Victor Price, David A. Fugger, Lars Bell, John I. Schild, Hansjörg van Endert, Peter Harkiolaki, Maria Iversen, Astrid K.N. |
author_sort | Pymm, Phillip |
collection | PubMed |
description | Cytotoxic T lymphocyte (CTL) and natural killer (NK) cell responses to a single optimal 10-mer epitope (KK10) in the human immunodeficiency virus type-1 (HIV-1) protein p24Gag are associated with enhanced immune control in patients expressing human leukocyte antigen (HLA)-B(∗)27:05. We find that proteasomal activity generates multiple length variants of KK10 (4–14 amino acids), which bind TAP and HLA-B(∗)27:05. However, only epitope forms ≥8 amino acids evoke peptide length-specific and cross-reactive CTL responses. Structural analyses reveal that all epitope forms bind HLA-B(∗)27:05 via a conserved N-terminal motif, and competition experiments show that the truncated epitope forms outcompete immunogenic epitope forms for binding to HLA-B(∗)27:05. Common viral escape mutations abolish (L136M) or impair (R132K) production of KK10 and longer epitope forms. Peptide length influences how well the inhibitory NK cell receptor KIR3DL1 binds HLA-B(∗)27:05 peptide complexes and how intraepitope mutations affect this interaction. These results identify a viral escape mechanism from CTL and NK responses based on differential antigen processing and peptide competition. |
format | Online Article Text |
id | pubmed-9631117 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-96311172022-11-07 Epitope length variants balance protective immune responses and viral escape in HIV-1 infection Pymm, Phillip Tenzer, Stefan Wee, Edmund Weimershaus, Mirjana Burgevin, Anne Kollnberger, Simon Gerstoft, Jan Josephs, Tracy M. Ladell, Kristin McLaren, James E. Appay, Victor Price, David A. Fugger, Lars Bell, John I. Schild, Hansjörg van Endert, Peter Harkiolaki, Maria Iversen, Astrid K.N. Cell Rep Article Cytotoxic T lymphocyte (CTL) and natural killer (NK) cell responses to a single optimal 10-mer epitope (KK10) in the human immunodeficiency virus type-1 (HIV-1) protein p24Gag are associated with enhanced immune control in patients expressing human leukocyte antigen (HLA)-B(∗)27:05. We find that proteasomal activity generates multiple length variants of KK10 (4–14 amino acids), which bind TAP and HLA-B(∗)27:05. However, only epitope forms ≥8 amino acids evoke peptide length-specific and cross-reactive CTL responses. Structural analyses reveal that all epitope forms bind HLA-B(∗)27:05 via a conserved N-terminal motif, and competition experiments show that the truncated epitope forms outcompete immunogenic epitope forms for binding to HLA-B(∗)27:05. Common viral escape mutations abolish (L136M) or impair (R132K) production of KK10 and longer epitope forms. Peptide length influences how well the inhibitory NK cell receptor KIR3DL1 binds HLA-B(∗)27:05 peptide complexes and how intraepitope mutations affect this interaction. These results identify a viral escape mechanism from CTL and NK responses based on differential antigen processing and peptide competition. Cell Press 2022-03-01 /pmc/articles/PMC9631117/ /pubmed/35235807 http://dx.doi.org/10.1016/j.celrep.2022.110449 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Pymm, Phillip Tenzer, Stefan Wee, Edmund Weimershaus, Mirjana Burgevin, Anne Kollnberger, Simon Gerstoft, Jan Josephs, Tracy M. Ladell, Kristin McLaren, James E. Appay, Victor Price, David A. Fugger, Lars Bell, John I. Schild, Hansjörg van Endert, Peter Harkiolaki, Maria Iversen, Astrid K.N. Epitope length variants balance protective immune responses and viral escape in HIV-1 infection |
title | Epitope length variants balance protective immune responses and viral escape in HIV-1 infection |
title_full | Epitope length variants balance protective immune responses and viral escape in HIV-1 infection |
title_fullStr | Epitope length variants balance protective immune responses and viral escape in HIV-1 infection |
title_full_unstemmed | Epitope length variants balance protective immune responses and viral escape in HIV-1 infection |
title_short | Epitope length variants balance protective immune responses and viral escape in HIV-1 infection |
title_sort | epitope length variants balance protective immune responses and viral escape in hiv-1 infection |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9631117/ https://www.ncbi.nlm.nih.gov/pubmed/35235807 http://dx.doi.org/10.1016/j.celrep.2022.110449 |
work_keys_str_mv | AT pymmphillip epitopelengthvariantsbalanceprotectiveimmuneresponsesandviralescapeinhiv1infection AT tenzerstefan epitopelengthvariantsbalanceprotectiveimmuneresponsesandviralescapeinhiv1infection AT weeedmund epitopelengthvariantsbalanceprotectiveimmuneresponsesandviralescapeinhiv1infection AT weimershausmirjana epitopelengthvariantsbalanceprotectiveimmuneresponsesandviralescapeinhiv1infection AT burgevinanne epitopelengthvariantsbalanceprotectiveimmuneresponsesandviralescapeinhiv1infection AT kollnbergersimon epitopelengthvariantsbalanceprotectiveimmuneresponsesandviralescapeinhiv1infection AT gerstoftjan epitopelengthvariantsbalanceprotectiveimmuneresponsesandviralescapeinhiv1infection AT josephstracym epitopelengthvariantsbalanceprotectiveimmuneresponsesandviralescapeinhiv1infection AT ladellkristin epitopelengthvariantsbalanceprotectiveimmuneresponsesandviralescapeinhiv1infection AT mclarenjamese epitopelengthvariantsbalanceprotectiveimmuneresponsesandviralescapeinhiv1infection AT appayvictor epitopelengthvariantsbalanceprotectiveimmuneresponsesandviralescapeinhiv1infection AT pricedavida epitopelengthvariantsbalanceprotectiveimmuneresponsesandviralescapeinhiv1infection AT fuggerlars epitopelengthvariantsbalanceprotectiveimmuneresponsesandviralescapeinhiv1infection AT belljohni epitopelengthvariantsbalanceprotectiveimmuneresponsesandviralescapeinhiv1infection AT schildhansjorg epitopelengthvariantsbalanceprotectiveimmuneresponsesandviralescapeinhiv1infection AT vanendertpeter epitopelengthvariantsbalanceprotectiveimmuneresponsesandviralescapeinhiv1infection AT harkiolakimaria epitopelengthvariantsbalanceprotectiveimmuneresponsesandviralescapeinhiv1infection AT iversenastridkn epitopelengthvariantsbalanceprotectiveimmuneresponsesandviralescapeinhiv1infection |