Cargando…
Identifying lncRNA–disease association based on GAT multiple-operator aggregation and inductive matrix completion
Computable models as a fundamental candidate for traditional biological experiments have been applied in inferring lncRNA–disease association (LDA) for many years, without time-consuming and laborious limitations. However, sparsity inherently existing in known heterogeneous bio-data is an obstacle t...
Autores principales: | Zhang, Yi, Wang, Yu, Li, Xin, Liu, Yarong, Chen, Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9631210/ https://www.ncbi.nlm.nih.gov/pubmed/36338997 http://dx.doi.org/10.3389/fgene.2022.1029300 |
Ejemplares similares
-
Inferring Latent Disease-lncRNA Associations by Faster Matrix Completion on a Heterogeneous Network
por: Li, Wen, et al.
Publicado: (2019) -
SPCMLMI: A structural perturbation-based matrix completion method to predict lncRNA–miRNA interactions
por: Wang, Mei-Neng, et al.
Publicado: (2022) -
Survival-Related lncRNA Landscape Analysis Identifies LINC01614 as an Oncogenic lncRNA in Gastric Cancer
por: Wu, Huijie, et al.
Publicado: (2021) -
Predicting lncRNA–Protein Interaction With Weighted Graph-Regularized Matrix Factorization
por: Sun, Xibo, et al.
Publicado: (2021) -
Identification of lncRNA biomarkers in hepatocellular carcinoma by comprehensive analysis of the lncRNA-mediated ceRNA network
por: Ye, Dingde, et al.
Publicado: (2022)