Cargando…
Deep Learning-based Trichoscopic Image Analysis and Quantitative Model for Predicting Basic and Specific Classification in Male Androgenetic Alopecia
Since the results of basic and specific classification in male androgenetic alopecia are subjective, and trichoscopic data, such as hair density and diameter distribution, are potential quantitative indicators, the aim of this study was to develop a deep learning framework for automatic trichoscopic...
Autores principales: | GAO, Meng, WANG, Yue, XU, Haipeng, XU, Congcong, YANG, Xianhong, NIE, Jin, ZHANG, Ziye, LI, Zhixuan, HOU, Wei, JIANG, Yiqun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society for Publication of Acta Dermato-Venereologica
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9631273/ https://www.ncbi.nlm.nih.gov/pubmed/34935989 http://dx.doi.org/10.2340/actadv.v101.564 |
Ejemplares similares
-
Trichoscopic Findings in Androgenetic Alopecia
por: Kasumagic-Halilovic, Emina
Publicado: (2021) -
Correlation of Trichoscopic Findings in Androgenetic Alopecia and the Disease Severity
por: Ummiti, Amudha, et al.
Publicado: (2019) -
Clinical and Trichoscopic Graded Live Visual Scale for Androgenetic Alopecia
por: Rossi, Alfredo, et al.
Publicado: (2022) -
Autologous Micrografts from Scalp Tissue: Trichoscopic and Long-Term Clinical Evaluation in Male and Female Androgenetic Alopecia
por: Gentile, Pietro, et al.
Publicado: (2020) -
Trichoscopic Patterns of Nonscarring Alopecia's
por: Govindarajulu, Shruthi Madhavi, et al.
Publicado: (2020)