Cargando…
Machine learning models for predicting in-hospital mortality in patient with sepsis: Analysis of vital sign dynamics
PURPOSE: To build machine learning models for predicting the risk of in-hospital death in patients with sepsis within 48 h, using only dynamic changes in the patient's vital signs. METHODS: This retrospective observational cohort study enrolled septic patients from five emergency departments (E...
Autores principales: | Cheng, Chi-Yung, Kung, Chia-Te, Chen, Fu-Cheng, Chiu, I-Min, Lin, Chun-Hung Richard, Chu, Chun-Chieh, Kung, Chien Feng, Su, Chih-Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9631306/ https://www.ncbi.nlm.nih.gov/pubmed/36341257 http://dx.doi.org/10.3389/fmed.2022.964667 |
Ejemplares similares
-
The timing of last hemodialysis influences the prognostic value of serum lactate levels in predicting mortality of end-stage renal disease patients with sepsis in the emergency department
por: Chu, Chun Chieh, et al.
Publicado: (2021) -
Metformin Affects Serum Lactate Levels in Predicting Mortality of Patients with Sepsis and Bacteremia
por: Chen, Fu-Cheng, et al.
Publicado: (2019) -
Trajectories of Vital Signs and Risk of In-Hospital Cardiac Arrest
por: Tsai, Chu-Lin, et al.
Publicado: (2022) -
Quick Sepsis-related Organ Failure Assessment predicts 72-h mortality in patients with suspected infection
por: Chen, Fu-Cheng, et al.
Publicado: (2019) -
Difference between elderly and non-elderly patients in using serum lactate level to predict mortality caused by sepsis in the emergency department
por: Cheng, Hsien-Hung, et al.
Publicado: (2018)