Cargando…

First study on virulence genes, antimicrobial resistance, and integrons in Escherichia coli isolated from cage, free-range, and organic commercial eggs in Phayao Province, Thailand

BACKGROUND AND AIM: Antimicrobial resistance (AMR) is a global problem that affects human and animal health, and eggs can act as a vehicle for pathogenic and non-pathogenic resistant bacteria in the food chain. Escherichia coli is an indicator of food contamination with fecal materials as well as th...

Descripción completa

Detalles Bibliográficos
Autores principales: Siriphap, Achiraya, Suwancharoen, Chittakun, Laenoi, Watchara, Kraivuttinun, Parinya, Suthienkul, Orasa, Prapasawat, Watsawan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Veterinary World 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9631383/
https://www.ncbi.nlm.nih.gov/pubmed/36341073
http://dx.doi.org/10.14202/vetworld.2022.2293-2301
Descripción
Sumario:BACKGROUND AND AIM: Antimicrobial resistance (AMR) is a global problem that affects human and animal health, and eggs can act as a vehicle for pathogenic and non-pathogenic resistant bacteria in the food chain. Escherichia coli is an indicator of food contamination with fecal materials as well as the occurrence and levels of AMR. This study aimed to investigate the presence of AMR, integrons, and virulence genes in E. coli isolated from eggshell samples of three egg production systems, from supermarkets in Thailand. MATERIALS AND METHODS: A total of 750 hen’s egg samples were purchased from supermarkets in Phayao Province: Cage eggs (250), free-range eggs (250), and organic eggs (250). Each sample was soaked in buffered peptone water (BPW), and the BPW samples were incubated at 37°C for 18–24 h. All samples were tested for E. coli by the standard conventional culture method. Then, all identified E. coli were tested for antimicrobial susceptibility to 15 antimicrobial agents by the agar disk diffusion method. All E. coli strains were subsequently found to have virulence genes and Classes 1 and 2 integrons by polymerase chain reaction. RESULTS: Among the eggshell samples, 91 samples were identified as having E. coli (cage eggs, 24 strains; free-range eggs, 27 strains; and organic eggs, 40 strains). Then, among the E. coli strains, 47 (51.6%) were positive for at least one virulence gene. The proportion of AMR in the eggshell samples was 91.2% (83/91), and streptomycin (STR), ampicillin (AMP), and tetracycline (TET) had a high degree of resistance. Among the E. coli strains, 27 (29.7%) strains were positive for class 1 or 2 integrons, and integron-positive strains were commonly found in STR-, AMP-, and TET-resistant strains. Multidrug resistance (MDR) was detected in 57.1% (52/91) of the E. coli strains, with STR-AMP-TET (5.5%) as the most frequent pattern. The proportion of MDR in cage eggs was 75.0% (18/24), which was higher than in both free-range and organic eggs. On the other hand, 53.2% (25/47) of E. coli carrying virulence genes had MDR, distributed across the production systems as follows: Cage eggs, 76.9% (10/13); free-range eggs, 63.6% (7/11); and organic eggs, 34.8% (8/23). CONCLUSION: Escherichia coli was detected in eggshell samples from all three egg production systems. The high level of virulence genes, AMR, and integrons indicated the possibility of dissemination of AMR among pathogenic and commensal E. coli through eggshells. These findings could be a major concern to farmers, food handlers, and consumers, especially regarding raw egg consumption.