Cargando…
Hydrogen Flow Controller Applied to Driving Behavior Observation of Hydrogen Fuel Cell Performance Test
[Image: see text] Fuel cell performance tests for automotive applications include static and dynamic tests, and the dynamic load test is typically carried out to investigate the cell operating performance related to driving behavior in the particular use of fuel cell electric vehicles. The automatic...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9631412/ https://www.ncbi.nlm.nih.gov/pubmed/36340136 http://dx.doi.org/10.1021/acsomega.2c02000 |
Sumario: | [Image: see text] Fuel cell performance tests for automotive applications include static and dynamic tests, and the dynamic load test is typically carried out to investigate the cell operating performance related to driving behavior in the particular use of fuel cell electric vehicles. The automatic hydrogen flow controller, utilized to regulate the hydrogen flow as a function of time, is one of the imperative apparatuses applied for the dynamic test. The driving behavior generally consists of rapid load fluctuations, several loads running at idle, full power, overload circumstances, start–stop repeats, and cold starting, and these dynamic variations are directly related to the power required for propelling a vehicle and the demand for hydrogen volume fluctuation throughout time. The desired automatic hydrogen flow controller was designed and manufactured for the dynamic performance test via the driving simulation protocol of a heavy-duty vehicle. The main experimental activities were performed to observe the responsibility and accuracy of the invented controller. The relation between the reliability of using the automatic hydrogen flow controller and the performance improvement of fuel cell operation was studied to gain ideas for further fuel cell modification. The hydrogen flow rates controlled by the created flow controller presented a data tolerance of approximately 0.84% which was not significantly different from the theoretical figure based on T-test analysis. The controller reacted to variations in flow rates in as little as 1–2 s, which was acceptable for the dynamic test. Regarding the performance enhancement, this automatic hydrogen flow controller assisted a single cell to generate 16% more power and 33% more energy at 45 mA as a minimum current demand in comparison with the results obtained from a test system using a traditional hydrogen controller with a constant flow rate. |
---|