Cargando…
Methyl Effect on the Metabolism, Chemical Stability, and Permeability Profile of Bioactive N-Sulfonylhydrazones
[Image: see text] Sulfonylhydrazones are privileged structures with multifaceted pharmacological activity. Exploring the hypoglycemic properties of these organic compounds, we previously revealed a new series of N-sulfonylhydrazones (NSH) as antidiabetic drug candidates. Here, we evaluated the micro...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9631887/ https://www.ncbi.nlm.nih.gov/pubmed/36340078 http://dx.doi.org/10.1021/acsomega.2c04368 |
_version_ | 1784823910680756224 |
---|---|
author | Guedes, Jéssica de Siqueira Carneiro, Teiliane Rodrigues Pinheiro, Pedro de Sena Murteira Fraga, Carlos Alberto Manssour Sant′Anna, Carlos Mauricio R. Barreiro, Eliezer J. Lima, Lídia Moreira |
author_facet | Guedes, Jéssica de Siqueira Carneiro, Teiliane Rodrigues Pinheiro, Pedro de Sena Murteira Fraga, Carlos Alberto Manssour Sant′Anna, Carlos Mauricio R. Barreiro, Eliezer J. Lima, Lídia Moreira |
author_sort | Guedes, Jéssica de Siqueira |
collection | PubMed |
description | [Image: see text] Sulfonylhydrazones are privileged structures with multifaceted pharmacological activity. Exploring the hypoglycemic properties of these organic compounds, we previously revealed a new series of N-sulfonylhydrazones (NSH) as antidiabetic drug candidates. Here, we evaluated the microsomal metabolism, chemical stability, and permeability profile of these NSH prototypes, focusing on the pharmacokinetic differences in N-methylated and non-N-methylated analogs. Our results demonstrated that the N-methylated analogs (LASSBio-1772 and LASSBio-1774) were metabolized by CYP, forming three and one metabolites, respectively. These prototypes exhibited chemical stability at pH 2.0 and 7.4 and brain penetration ability. On the other hand, non-N-methylated analogs (LASSBio-1771 and LASSBio-1773) were hydrolyzed in acid pH and could not cross the artificial blood–brain barrier. The cyano group in LASSBio-1771 was postulated as a possible site of interaction with the heme group, potentially inhibiting CYP enzymes. Moreover, prototypes with the methyl ester group were metabolized by carboxylesterase, and non-N-methylated analogs did not show oxidative metabolism. The prototypes (except LASSBio-1774) showed excellent gastrointestinal absorption. Altogether, our data support the idea that the methyl effect on NSH strongly alters their pharmacokinetic profile, enhances the recognition by CYP enzymes, promotes brain penetration, and plays a protective effect upon acid hydrolysis. |
format | Online Article Text |
id | pubmed-9631887 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-96318872022-11-04 Methyl Effect on the Metabolism, Chemical Stability, and Permeability Profile of Bioactive N-Sulfonylhydrazones Guedes, Jéssica de Siqueira Carneiro, Teiliane Rodrigues Pinheiro, Pedro de Sena Murteira Fraga, Carlos Alberto Manssour Sant′Anna, Carlos Mauricio R. Barreiro, Eliezer J. Lima, Lídia Moreira ACS Omega [Image: see text] Sulfonylhydrazones are privileged structures with multifaceted pharmacological activity. Exploring the hypoglycemic properties of these organic compounds, we previously revealed a new series of N-sulfonylhydrazones (NSH) as antidiabetic drug candidates. Here, we evaluated the microsomal metabolism, chemical stability, and permeability profile of these NSH prototypes, focusing on the pharmacokinetic differences in N-methylated and non-N-methylated analogs. Our results demonstrated that the N-methylated analogs (LASSBio-1772 and LASSBio-1774) were metabolized by CYP, forming three and one metabolites, respectively. These prototypes exhibited chemical stability at pH 2.0 and 7.4 and brain penetration ability. On the other hand, non-N-methylated analogs (LASSBio-1771 and LASSBio-1773) were hydrolyzed in acid pH and could not cross the artificial blood–brain barrier. The cyano group in LASSBio-1771 was postulated as a possible site of interaction with the heme group, potentially inhibiting CYP enzymes. Moreover, prototypes with the methyl ester group were metabolized by carboxylesterase, and non-N-methylated analogs did not show oxidative metabolism. The prototypes (except LASSBio-1774) showed excellent gastrointestinal absorption. Altogether, our data support the idea that the methyl effect on NSH strongly alters their pharmacokinetic profile, enhances the recognition by CYP enzymes, promotes brain penetration, and plays a protective effect upon acid hydrolysis. American Chemical Society 2022-10-19 /pmc/articles/PMC9631887/ /pubmed/36340078 http://dx.doi.org/10.1021/acsomega.2c04368 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Guedes, Jéssica de Siqueira Carneiro, Teiliane Rodrigues Pinheiro, Pedro de Sena Murteira Fraga, Carlos Alberto Manssour Sant′Anna, Carlos Mauricio R. Barreiro, Eliezer J. Lima, Lídia Moreira Methyl Effect on the Metabolism, Chemical Stability, and Permeability Profile of Bioactive N-Sulfonylhydrazones |
title | Methyl Effect on
the Metabolism, Chemical Stability,
and Permeability Profile of Bioactive N-Sulfonylhydrazones |
title_full | Methyl Effect on
the Metabolism, Chemical Stability,
and Permeability Profile of Bioactive N-Sulfonylhydrazones |
title_fullStr | Methyl Effect on
the Metabolism, Chemical Stability,
and Permeability Profile of Bioactive N-Sulfonylhydrazones |
title_full_unstemmed | Methyl Effect on
the Metabolism, Chemical Stability,
and Permeability Profile of Bioactive N-Sulfonylhydrazones |
title_short | Methyl Effect on
the Metabolism, Chemical Stability,
and Permeability Profile of Bioactive N-Sulfonylhydrazones |
title_sort | methyl effect on
the metabolism, chemical stability,
and permeability profile of bioactive n-sulfonylhydrazones |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9631887/ https://www.ncbi.nlm.nih.gov/pubmed/36340078 http://dx.doi.org/10.1021/acsomega.2c04368 |
work_keys_str_mv | AT guedesjessicadesiqueira methyleffectonthemetabolismchemicalstabilityandpermeabilityprofileofbioactivensulfonylhydrazones AT carneiroteilianerodrigues methyleffectonthemetabolismchemicalstabilityandpermeabilityprofileofbioactivensulfonylhydrazones AT pinheiropedrodesenamurteira methyleffectonthemetabolismchemicalstabilityandpermeabilityprofileofbioactivensulfonylhydrazones AT fragacarlosalbertomanssour methyleffectonthemetabolismchemicalstabilityandpermeabilityprofileofbioactivensulfonylhydrazones AT santannacarlosmauricior methyleffectonthemetabolismchemicalstabilityandpermeabilityprofileofbioactivensulfonylhydrazones AT barreiroeliezerj methyleffectonthemetabolismchemicalstabilityandpermeabilityprofileofbioactivensulfonylhydrazones AT limalidiamoreira methyleffectonthemetabolismchemicalstabilityandpermeabilityprofileofbioactivensulfonylhydrazones |