Cargando…

Protective Effect of Ebselen on Ischemia-reperfusion Injury in Epigastric Skin Flaps in Rats

The purpose of this study was to determine the role of oxidized diacylglycerol (DAG) and the molecular mechanism underlying ischemia-reperfusion (I/R) injury in rat skin flaps. The protective effect of ebselen on the viability of rat skin flaps with I/R injury was investigated. Flaps were designed a...

Descripción completa

Detalles Bibliográficos
Autores principales: Kuroki, Takahiko, Takekoshi, Susumu, Kitatani, Kanae, Kato, Chikara, Miyasaka, Muneo, Akamatsu, Tadashi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JAPAN SOCIETY OF HISTOCHEMISTRY AND CYTOCHEMISTRY 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9631984/
https://www.ncbi.nlm.nih.gov/pubmed/36405551
http://dx.doi.org/10.1267/ahc.22-00062
Descripción
Sumario:The purpose of this study was to determine the role of oxidized diacylglycerol (DAG) and the molecular mechanism underlying ischemia-reperfusion (I/R) injury in rat skin flaps. The protective effect of ebselen on the viability of rat skin flaps with I/R injury was investigated. Flaps were designed and raised in the left inguinal region. Then, a microvascular clamp was applied to the vascular pedicle and reperfused after 6 hr. After 7 days of I/R (I/R group), the skin flap survival area ratio was significantly reduced compared to the normal skin. The administration of ebselen significantly improved the ratio compared to the I/R group. The flap survival area ratio of the I/R + ebselen group was significantly improved compared to the I/R + vehicle group. In the I/R + ebselen group, the oxidized DAG content and intensity of phosphorylated PKCα and PKCδ were significantly lower compared to the I/R + vehicle group. Furthermore, the inflammatory response was suppressed in the I/R + ebselen group compared to the I/R + vehicle group. These results indicate that ebselen is useful as a preventive and therapeutic agent for skin flap necrosis caused by I/R, because of reduction and elimination of oxidized DAG.