Cargando…
Immunomodulatory effects of β-defensin 2 on macrophages induced immuno-upregulation and their antitumor function in breast cancer
BACKGROUND: Macrophages are mononuclear CD34(+) antigen-presenting cells of defense mechanism and play dual roles in tumor burden. The immunomodulatory and their antitumor function of β-defensin 2 is still unclear, despite the accumulating evidence of the response in infection. So, the aim of presen...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9632142/ https://www.ncbi.nlm.nih.gov/pubmed/36324077 http://dx.doi.org/10.1186/s12865-022-00527-y |
Sumario: | BACKGROUND: Macrophages are mononuclear CD34(+) antigen-presenting cells of defense mechanism and play dual roles in tumor burden. The immunomodulatory and their antitumor function of β-defensin 2 is still unclear, despite the accumulating evidence of the response in infection. So, the aim of present study is to elucidate the role of β-defensin 2 on the level of ROS, cytokines, chemokine expression in macrophages and antitumor function in breast cancer. METHOD: Swiss albino mice were used to harvest PEC macrophages and C127i breast cancer cells line for tumor model was used in this study. Macrophages were harvested and characterized by flow-cytometry using F4/80 and CD11c antibodies. MTT was performed to estimate cytotoxicity and dose optimization of β-defensin 2. Oxidative stress was analyzed by H(2)O(2) and NO estimation followed by iNOS quantified by q-PCR. Cytokines and chemokines estimation was done using q-PCR. Co-culture experiment was performed to study anti-tumor function using PI for cell cycle, Annexin –V and CFSE analysis for cell proliferation. RESULTS: PEC harvested macrophages were characterized by flow-cytometry using F4/80 and CD11c antibodies with the purity of 8% pure population of macrophages. It was found that 99% of cells viable at the maximum dose of 100 ng/ml of β-defensin 2 in MTT. Levels of NO and H(2)O(2) were found to be decreased in β-defensin 2 as compared to control. Expression of cytokines of IFN-γ, IL-1α, TNF-α, TGF-βwas found to be increased while IL-3 was decreased in β-defensin 2 group as compared to control. Levels of chemokines CXCL-1, CXCL-5 and CCL5 increased in treated macrophages while CCL24 and CXCL-15 expression decreased. Adhesion receptor (CD32) and fusion receptor (CD204) were decreased in the β-defensin 2 group as compared to control. Anti-tumor experiment was performed using co-culture experiment apoptosis (Annexin-V) was induced, cell cycle arrest in phage and cell proliferation of C127i cells was decreased. CONCLUSION: This is the first report of β-defensin 2 modulates macrophage immunomodulatory and their antitumor function in breast cancer. β-defensin 2 as a new therapeutic target for immunotherapy as an adjuvant in vaccines. |
---|