Cargando…
Silicone Nanofilament Coatings as Flexible Catalyst Supports for a Knoevenagel Condensation Reaction in Batch and Flow Systems
[Image: see text] In this work, silicone nanofilament (SNF) coatings were prepared via a droplet-assisted growth and shaping (DAGS) approach, where the preparation of the coatings is allowed under ambient conditions. The application of SNF coatings as catalyst supports for amino moieties from (3-ami...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9632255/ https://www.ncbi.nlm.nih.gov/pubmed/36340143 http://dx.doi.org/10.1021/acsomega.2c06157 |
Sumario: | [Image: see text] In this work, silicone nanofilament (SNF) coatings were prepared via a droplet-assisted growth and shaping (DAGS) approach, where the preparation of the coatings is allowed under ambient conditions. The application of SNF coatings as catalyst supports for amino moieties from (3-aminopropyl)triethoxysilane (APTES) was investigated. With the optimized coating conditions identified, the Brunauer–Emmett–Teller surface areas of a bare glass filter substrate and bare glass beads after the coating have increased by 5-fold and 16-fold, respectively. The SNF-coated filters were readily functionalized with amino groups via a liquid-phase deposition process, and their catalytic activities for a Knoevenagel reaction were evaluated using a batch reactor and a packed bed reactor. In both reactors, the as-prepared filters demonstrated superior catalytic performance over the functionalized filters without SNF coatings. Notably, the unique flexibility of the SNF coatings allowed the facile preparation of a packed bed reactor and a scalable catalytic system. It is expected that the packed bed system established in this study will support the development and the use of various SNF-supported organocatalysts and catalytic materials. |
---|