Cargando…

A Feature-Encoded Physics-Informed Parameter Identification Neural Network for Musculoskeletal Systems

Identification of muscle-tendon force generation properties and muscle activities from physiological measurements, e.g., motion data and raw surface electromyography (sEMG), offers opportunities to construct a subject-specific musculoskeletal (MSK) digital twin system for health condition assessment...

Descripción completa

Detalles Bibliográficos
Autores principales: Taneja, Karan, He, Xiaolong, He, QiZhi, Zhao, Xinlun, Lin, Yun-An, Loh, Kenneth J., Chen, Jiun-Shyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Mechanical Engineers 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9632475/
https://www.ncbi.nlm.nih.gov/pubmed/35972808
http://dx.doi.org/10.1115/1.4055238
_version_ 1785145802594713600
author Taneja, Karan
He, Xiaolong
He, QiZhi
Zhao, Xinlun
Lin, Yun-An
Loh, Kenneth J.
Chen, Jiun-Shyan
author_facet Taneja, Karan
He, Xiaolong
He, QiZhi
Zhao, Xinlun
Lin, Yun-An
Loh, Kenneth J.
Chen, Jiun-Shyan
author_sort Taneja, Karan
collection PubMed
description Identification of muscle-tendon force generation properties and muscle activities from physiological measurements, e.g., motion data and raw surface electromyography (sEMG), offers opportunities to construct a subject-specific musculoskeletal (MSK) digital twin system for health condition assessment and motion prediction. While machine learning approaches with capabilities in extracting complex features and patterns from a large amount of data have been applied to motion prediction given sEMG signals, the learned data-driven mapping is black-box and may not satisfy the underlying physics and has reduced generality. In this work, we propose a feature-encoded physics-informed parameter identification neural network (FEPI-PINN) for simultaneous prediction of motion and parameter identification of human MSK systems. In this approach, features of high-dimensional noisy sEMG signals are projected onto a low-dimensional noise-filtered embedding space for the enhancement of forwarding dynamics prediction. This FEPI-PINN model can be trained to relate sEMG signals to joint motion and simultaneously identify key MSK parameters. The numerical examples demonstrate that the proposed framework can effectively identify subject-specific muscle parameters and the trained physics-informed forward-dynamics surrogate yields accurate motion predictions of elbow flexion-extension motion that are in good agreement with the measured joint motion data.
format Online
Article
Text
id pubmed-9632475
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Society of Mechanical Engineers
record_format MEDLINE/PubMed
spelling pubmed-96324752023-12-01 A Feature-Encoded Physics-Informed Parameter Identification Neural Network for Musculoskeletal Systems Taneja, Karan He, Xiaolong He, QiZhi Zhao, Xinlun Lin, Yun-An Loh, Kenneth J. Chen, Jiun-Shyan J Biomech Eng Research Papers Identification of muscle-tendon force generation properties and muscle activities from physiological measurements, e.g., motion data and raw surface electromyography (sEMG), offers opportunities to construct a subject-specific musculoskeletal (MSK) digital twin system for health condition assessment and motion prediction. While machine learning approaches with capabilities in extracting complex features and patterns from a large amount of data have been applied to motion prediction given sEMG signals, the learned data-driven mapping is black-box and may not satisfy the underlying physics and has reduced generality. In this work, we propose a feature-encoded physics-informed parameter identification neural network (FEPI-PINN) for simultaneous prediction of motion and parameter identification of human MSK systems. In this approach, features of high-dimensional noisy sEMG signals are projected onto a low-dimensional noise-filtered embedding space for the enhancement of forwarding dynamics prediction. This FEPI-PINN model can be trained to relate sEMG signals to joint motion and simultaneously identify key MSK parameters. The numerical examples demonstrate that the proposed framework can effectively identify subject-specific muscle parameters and the trained physics-informed forward-dynamics surrogate yields accurate motion predictions of elbow flexion-extension motion that are in good agreement with the measured joint motion data. American Society of Mechanical Engineers 2022-12-01 2022-09-19 /pmc/articles/PMC9632475/ /pubmed/35972808 http://dx.doi.org/10.1115/1.4055238 Text en Copyright © 2022 by ASME https://creativecommons.org/licenses/by/4.0/This article is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Research Papers
Taneja, Karan
He, Xiaolong
He, QiZhi
Zhao, Xinlun
Lin, Yun-An
Loh, Kenneth J.
Chen, Jiun-Shyan
A Feature-Encoded Physics-Informed Parameter Identification Neural Network for Musculoskeletal Systems
title A Feature-Encoded Physics-Informed Parameter Identification Neural Network for Musculoskeletal Systems
title_full A Feature-Encoded Physics-Informed Parameter Identification Neural Network for Musculoskeletal Systems
title_fullStr A Feature-Encoded Physics-Informed Parameter Identification Neural Network for Musculoskeletal Systems
title_full_unstemmed A Feature-Encoded Physics-Informed Parameter Identification Neural Network for Musculoskeletal Systems
title_short A Feature-Encoded Physics-Informed Parameter Identification Neural Network for Musculoskeletal Systems
title_sort feature-encoded physics-informed parameter identification neural network for musculoskeletal systems
topic Research Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9632475/
https://www.ncbi.nlm.nih.gov/pubmed/35972808
http://dx.doi.org/10.1115/1.4055238
work_keys_str_mv AT tanejakaran afeatureencodedphysicsinformedparameteridentificationneuralnetworkformusculoskeletalsystems
AT hexiaolong afeatureencodedphysicsinformedparameteridentificationneuralnetworkformusculoskeletalsystems
AT heqizhi afeatureencodedphysicsinformedparameteridentificationneuralnetworkformusculoskeletalsystems
AT zhaoxinlun afeatureencodedphysicsinformedparameteridentificationneuralnetworkformusculoskeletalsystems
AT linyunan afeatureencodedphysicsinformedparameteridentificationneuralnetworkformusculoskeletalsystems
AT lohkennethj afeatureencodedphysicsinformedparameteridentificationneuralnetworkformusculoskeletalsystems
AT chenjiunshyan afeatureencodedphysicsinformedparameteridentificationneuralnetworkformusculoskeletalsystems
AT tanejakaran featureencodedphysicsinformedparameteridentificationneuralnetworkformusculoskeletalsystems
AT hexiaolong featureencodedphysicsinformedparameteridentificationneuralnetworkformusculoskeletalsystems
AT heqizhi featureencodedphysicsinformedparameteridentificationneuralnetworkformusculoskeletalsystems
AT zhaoxinlun featureencodedphysicsinformedparameteridentificationneuralnetworkformusculoskeletalsystems
AT linyunan featureencodedphysicsinformedparameteridentificationneuralnetworkformusculoskeletalsystems
AT lohkennethj featureencodedphysicsinformedparameteridentificationneuralnetworkformusculoskeletalsystems
AT chenjiunshyan featureencodedphysicsinformedparameteridentificationneuralnetworkformusculoskeletalsystems