Cargando…
Dragon fruit detection in natural orchard environment by integrating lightweight network and attention mechanism
An improved lightweight network (Improved YOLOv5s) was proposed based on YOLOv5s in this study to realise all-weather detection of dragon fruit in a complex orchard environment. A ghost module was introduced in the original YOLOv5s to realise the lightweight of the model. The coordinate attention me...
Autores principales: | Zhang, Bin, Wang, Rongrong, Zhang, Huiming, Yin, Chenghai, Xia, Yuyang, Fu, Meng, Fu, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9632628/ https://www.ncbi.nlm.nih.gov/pubmed/36340417 http://dx.doi.org/10.3389/fpls.2022.1040923 |
Ejemplares similares
-
Polar-Net: Green fruit instance segmentation in complex orchard environment
por: Jia, Weikuan, et al.
Publicado: (2022) -
Homozygote Depression in Gamete-Derived Dragon-Fruit (Hylocereus) Lines
por: Li, Daqing, et al.
Publicado: (2018) -
Accurate segmentation of green fruit based on optimized mask RCNN application in complex orchard
por: Jia, Weikuan, et al.
Publicado: (2022) -
Lightweight Fruit-Detection Algorithm for Edge Computing Applications
por: Zhang, Wenli, et al.
Publicado: (2021) -
Skeleton extraction and pruning point identification of jujube tree for dormant pruning using space colonization algorithm
por: Fu, Yuxing, et al.
Publicado: (2023)