Cargando…
A study on the performance and cost-effectiveness of robots in replacing manual nucleic acid collection method: Experience from the COVID-19 pandemic
BACKGROUND: The COVID-19 pandemic has led nucleic acid collection and detection became a measure to ensure normal life in China. Considering the huge detection demand, it has emerged that robots replace manual sample collection. However, the cost-effectiveness of nucleic acid collection by robots in...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9632764/ https://www.ncbi.nlm.nih.gov/pubmed/36327236 http://dx.doi.org/10.1371/journal.pone.0276782 |
Sumario: | BACKGROUND: The COVID-19 pandemic has led nucleic acid collection and detection became a measure to ensure normal life in China. Considering the huge detection demand, it has emerged that robots replace manual sample collection. However, the cost-effectiveness of nucleic acid collection by robots instead of humans remain unknown. METHODS: This study was approved by the Ethics Committee of the Shenzhen Luohu District People’s Hospital, number 2021-LHQRMYY-KYLL-031a. All participants signed the written informed consent of this study. 273 volunteers were recruited on December 1(st) 2021 from Shenzhen and divided into six groups: one group to be sampled by robots and the others to be sampled manually with varying specifications for swab rotation and insertion time. Questionnaires were distributed to the robot group to ask them sampling feeling. The effectiveness and safety of sampling were evaluated through the sampling efficiency, adverse events and sampling feeling of different groups. The economics of the different methods were judged by comparing the sampling cost for each. RESULTS: The sampling efficiency of the robot group was 96.9%, and there was no statistically significant difference between the other five manually sampled groups (p = 0.586). There were no serious adverse events in any of the six groups, but nasal soreness and tearing did occur in all group. Of the volunteers who underwent robotic sampling, 85.94% reported that the experience was either no different or more comfortable than the manual sampling. In economic terms, a single robot used to replace medical staff for sample collection becomes economically advantageous when the working time is ≥ 455 days. If multiple robots are used to replace twice the number of manual collections, it becomes more economical at 137 days and remains so as long as the robot is used. CONCLUSIONS: It appears safe and effective for robots to replace manual sampling method. Implementation of robotic sampling is economical and feasible, and can significantly save costs when working over a long term. |
---|