Cargando…
A systematic review and meta-analysis of human and zoonotic dog soil-transmitted helminth infections in Australian Indigenous communities
Soil-transmitted helminths (STH) infect 1.5 billion people and countless animals worldwide. In Australian Indigenous communities, STH infections have largely remained endemic despite control efforts, suggesting reservoirs of infection may exist. Dogs fulfil various important cultural, social and occ...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9632820/ https://www.ncbi.nlm.nih.gov/pubmed/36279298 http://dx.doi.org/10.1371/journal.pntd.0010895 |
Sumario: | Soil-transmitted helminths (STH) infect 1.5 billion people and countless animals worldwide. In Australian Indigenous communities, STH infections have largely remained endemic despite control efforts, suggesting reservoirs of infection may exist. Dogs fulfil various important cultural, social and occupational roles in Australian Indigenous communities and are populous in these settings. Dogs may also harbour zoonotic STHs capable of producing morbidity and mortality in dogs and humans. This review provides an overview of human and zoonotic STH infections, identifies the Australian Indigenous locations affected and the parasite species and hosts involved. The meta-analysis provides estimates of individual study and pooled true prevalence of STH infections in Australian Indigenous communities and identifies knowledge gaps for further research on zoonotic or anthroponotic potential. A systematic literature search identified 45 eligible studies documenting the presence of Strongyloides stercoralis, Trichuris trichiura, Ancylostoma caninum, Ancylostoma duodenale, Ancylostoma ceylanicum, undifferentiated hookworm, and Ascaris lumbricoides. Of these studies, 26 were also eligible for inclusion in meta-analysis to establish true prevalence in the light of imperfect diagnostic test sensitivity and specificity by Rogan-Gladen and Bayesian methods. These studies revealed pooled true prevalence estimates of 18.9% (95% CI 15.8–22.1) for human and canine S. stercoralis infections and 77.3% (95% CI 63.7–91.0) for canine A. caninum infections indicating continued endemicity, but considerably more heterogenous pooled estimates for canine A. ceylanicum infections, and A. duodenale, undifferentiated hookworm and T. trichiura in humans. This review suggests that the prevalence of STHs in Australian Indigenous communities has likely been underestimated, principally based on imperfect diagnostic tests. Potential misclassification of hookworm species in humans and dogs due to outdated methodology, also obscures this picture. High-quality contemporary studies are required to establish current true prevalence of parasite species in all relevant hosts to guide future policy development and control decisions under a culturally sound One Health framework. |
---|