Cargando…
Numerical study of a nonlinear COVID-19 pandemic model by finite difference and meshless methods
In this paper, a mathematical epidemiological model in the form of reaction diffusion is proposed for the transmission of the novel coronavirus (COVID-19). The next-generation method is utilized for calculating the threshold number R [Formula: see text] while the least square curve fitting approach...
Autor principal: | Zarin, Rahat |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Published by Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9633111/ https://www.ncbi.nlm.nih.gov/pubmed/36348759 http://dx.doi.org/10.1016/j.padiff.2022.100460 |
Ejemplares similares
-
Numerical solution of COVID-19 pandemic model via finite difference and meshless techniques
por: Zarin, Rahat, et al.
Publicado: (2023) -
A numerical study of spatio-temporal COVID-19 vaccine model via finite-difference operator-splitting and meshless techniques
por: Khan, Arshad A., et al.
Publicado: (2023) -
The numerical solution of a mathematical model of the Covid-19 pandemic utilizing a meshless local discrete Galerkin method
por: Asadi-Mehregan, Fatemeh, et al.
Publicado: (2022) -
Meshless Methods in Solid Mechanics
por: Chen, Youping, et al.
Publicado: (2006) -
Meshless Method with Operator Splitting Technique for Transient Nonlinear Bioheat Transfer in Two-Dimensional Skin Tissues
por: Zhang, Ze-Wei, et al.
Publicado: (2015)