Cargando…
Production of Glucoamylase from Novel Strain of Alternaria Alternata under Solid State Fermentation
Glucoamylase has an essential role as biocatalyst in various important industries of Pakistan. It is synthesized by using various fungal and bacterial strains, and different ecocultural conditions are applied under solid substrate fermentation method (SSF) to get the highest yield of glucoamylase. A...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9633194/ https://www.ncbi.nlm.nih.gov/pubmed/36337838 http://dx.doi.org/10.1155/2022/2943790 |
Sumario: | Glucoamylase has an essential role as biocatalyst in various important industries of Pakistan. It is synthesized by using various fungal and bacterial strains, and different ecocultural conditions are applied under solid substrate fermentation method (SSF) to get the highest yield of glucoamylase. Alternaria alternata is an important fungus that can grow on industrial raw material like wheat bran, dried potato powder, tea leaves, rice husk, and sugar cane peel which are used as substrate. Among all, dried potato powder (10g) proved the best fermentation media for growth of fungal strain as well as maximum glucoamylase producer. Moreover, several chemical and physical states were also explored through solid substrate fermentation technique on glucoamylase yield. The highest glucoamylase production was recorded after 72 hours incubation in incubation chamber with 10g raw substrate, 1ml inoculum spore solution, 30°C temperature, and 5 pH. Further, phosphate buffer (5 pH) as moistening agent, 5% starch concentration and media additive as nitrogen (yeast extract), and carbon source (maltose) were screened for maximum glucoamylase titer (17.3 ± 0.05(a)°U/ml/min) and the highest specific activity (39.2U/mg). These cultural conditions were most appropriate for growth of A. alternata on solid media and production of highest glucoamylase under solid state fermentation procedure that could be utilized for commercial synthesis of glucoamylase. |
---|