Cargando…
An Unsupervised Deep Learning-Based Model Using Multiomics Data to Predict Prognosis of Patients with Stomach Adenocarcinoma
METHODS: Patients (363 in total) with stomach adenocarcinoma from The Cancer Genome Atlas (TCGA) cohort were included. An autoencoder was constructed to integrate the RNA sequencing, miRNA sequencing, and methylation data. The features of the bottleneck layer were used to perform the k-means cluster...
Autores principales: | Chen, Sizhen, Zang, Yiteng, Xu, Biyun, Lu, Beier, Ma, Rongji, Miao, Pengcheng, Chen, Bingwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9633210/ https://www.ncbi.nlm.nih.gov/pubmed/36339684 http://dx.doi.org/10.1155/2022/5844846 |
Ejemplares similares
-
Multiomics and machine learning in lung cancer prognosis
por: Gao, Yanan, et al.
Publicado: (2020) -
Tensor-Decomposition-Based Unsupervised Feature Extraction Applied to Prostate Cancer Multiomics Data
por: Taguchi, Y-h., et al.
Publicado: (2020) -
Tensor-Decomposition-Based Unsupervised Feature Extraction in Single-Cell Multiomics Data Analysis
por: Taguchi, Y-h., et al.
Publicado: (2021) -
iPoLNG—An unsupervised model for the integrative analysis of single-cell multiomics data
por: Zhang, Wenyu, et al.
Publicado: (2023) -
Survival prediction in patients with colon adenocarcinoma via multiomics data integration using a deep learning algorithm
por: Lv, Jiudi, et al.
Publicado: (2020)