Cargando…

The Catalytic Reduction of Nitroanilines Using Synthesized CuFe(2)O(4) Nanoparticles in an Aqueous Medium

The primary objective of this research is to investigate the reduction of 4‐nitroaniline (4‐NA) and 2‐nitroaniline (2‐NA) using synthesized copper ferrite nanoparticles (NPs) via facile one‐step hydrothermal method as a heterogeneous nano‐catalyst. Nitroanilines were reduced in the presence and with...

Descripción completa

Detalles Bibliográficos
Autores principales: Naghash‐Hamed, Samin, Arsalani, Nasser, Mousavi, Seyed Borhan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9633289/
https://www.ncbi.nlm.nih.gov/pubmed/36328769
http://dx.doi.org/10.1002/open.202200156
Descripción
Sumario:The primary objective of this research is to investigate the reduction of 4‐nitroaniline (4‐NA) and 2‐nitroaniline (2‐NA) using synthesized copper ferrite nanoparticles (NPs) via facile one‐step hydrothermal method as a heterogeneous nano‐catalyst. Nitroanilines were reduced in the presence and without the catalyst with a constant amount (100 mg) of reducing agent of sodium borohydride (NaBH(4)) at room temperature in water to amino compounds. To characterize the functional groups, size, structure, and morphology of as‐prepared magnetic NPs, FTIR, XRD, SEM, and TEM were employed. The UV‐Vis spectrum was utilized to explore the catalytic effect of CuFe(2)O(4). The outcomes revealed that the synthesized CuFe(2)O(4) as a heterogeneous magnetic nano‐catalyst catalyzed the reduction of 4‐NA and 2‐NA significantly faster than other candidate catalysts. The outcomes demonstrated that the catalyst catalyzed 4‐nitroaniline to para‐phenylenediamine (p‐PDA) and 2‐nitroaniline to ortho‐phenylenediamine (o‐PDA) with a constant rate of 7.49×10(−2) s(−1) and 3.19×10(−2) s(−1), and conversion percentage of 96.5 and 95.6, in 40 s and 90 s, sequentially. Furthermore, the nanoparticles could be recovered by a magnetic separation method and reused for six consecutive cycles without remarkable loss of catalytic ability.