Cargando…
A machine learning approach applied to gynecological ultrasound to predict progression-free survival in ovarian cancer patients
In a growing number of social and clinical scenarios, machine learning (ML) is emerging as a promising tool for implementing complex multi-parametric decision-making algorithms. Regarding ovarian cancer (OC), despite the standardization of features that can support the discrimination of ovarian mass...
Autores principales: | Arezzo, Francesca, Cormio, Gennaro, La Forgia, Daniele, Santarsiero, Carla Mariaflavia, Mongelli, Michele, Lombardi, Claudio, Cazzato, Gerardo, Cicinelli, Ettore, Loizzi, Vera |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9633520/ https://www.ncbi.nlm.nih.gov/pubmed/35532797 http://dx.doi.org/10.1007/s00404-022-06578-1 |
Ejemplares similares
-
The Application of Sonovaginography for Implementing Ultrasound Assessment of Endometriosis and Other Gynaecological Diseases
por: Arezzo, Francesca, et al.
Publicado: (2022) -
Ultrasound Control of Cervical Regeneration after Large Loop Excision of the Transformation Zone: Results of an Innovative Measurement Technique
por: Pinto, Vincenzo, et al.
Publicado: (2023) -
A Rare Case of Collision Tumours of the Ovary: An Ovarian Serous Cystadenoma Coexisting with Fibrothecoma
por: Mongelli, Michele, et al.
Publicado: (2022) -
Preoperative sonographic assessment of a leiomyoma of the round ligament
por: Arezzo, Francesca, et al.
Publicado: (2022) -
HPV-Negative Cervical Cancer: A Narrative Review
por: Arezzo, Francesca, et al.
Publicado: (2021)