Cargando…
Large-scale demonstration of machine learning for the detection of volcanic deformation in Sentinel-1 satellite imagery
Radar (SAR) satellites systematically acquire imagery that can be used for volcano monitoring, characterising magmatic systems and potentially forecasting eruptions on a global scale. However, exploiting the large dataset is limited by the need for manual inspection, meaning timely dissemination of...
Autores principales: | Biggs, Juliet, Anantrasirichai, Nantheera, Albino, Fabien, Lazecky, Milan, Maghsoudi, Yasser |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9633547/ https://www.ncbi.nlm.nih.gov/pubmed/36345313 http://dx.doi.org/10.1007/s00445-022-01608-x |
Ejemplares similares
-
Global link between deformation and volcanic eruption quantified by satellite imagery
por: Biggs, J., et al.
Publicado: (2014) -
Estimating food resource availability in arid environments with Sentinel 2 satellite imagery
por: Funghi, Caterina, et al.
Publicado: (2020) -
Analysis-ready satellite data mosaics from Landsat and Sentinel-2 imagery
por: Ørka, Hans Ole, et al.
Publicado: (2023) -
Can Satellites Predict Yield? Ensemble Machine Learning and Statistical Analysis of Sentinel-2 Imagery for Processing Tomato Yield Prediction
por: Darra, Nicoleta, et al.
Publicado: (2023) -
Shelter tents mapping by machine learning and satellite imagery
por: Cheng, Hsiu-Chi
Publicado: (2023)