Cargando…

Gapped electron liquid state in the symmetric Anderson lattice, Kondo insulator state

The Kondo insulator state (KIS) realized in the symmetric Anderson model at half filling is studied in the framework of a mean field approach. It is shown that the state of the Kondo insulator is realized in a lattice with a double cell and a gapped electron liquid behaves like a gapless Majorana sp...

Descripción completa

Detalles Bibliográficos
Autor principal: Karnaukhov, Igor N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9633611/
https://www.ncbi.nlm.nih.gov/pubmed/36329108
http://dx.doi.org/10.1038/s41598-022-23221-w
Descripción
Sumario:The Kondo insulator state (KIS) realized in the symmetric Anderson model at half filling is studied in the framework of a mean field approach. It is shown that the state of the Kondo insulator is realized in a lattice with a double cell and a gapped electron liquid behaves like a gapless Majorana spin liquid. The local moments of d-electrons form a static [Formula: see text] -field in which band electrons move. The gap value in the quasi-particle excitations spectrum decreases with increasing an external magnetic field and closes at its critical value. The behavior of an electron liquid is studied for an arbitrary dimension of the model. The proposed approach leads to the description of KIS without the need to resort to artificial symmetry breaking to alternative understanding of the physical nature of this phase state.