Cargando…
Action mechanism of hypoglycemic principle 9-(R)-HODE isolated from cortex lycii based on a metabolomics approach
The 9-(R)-HODE is an active compound isolated from cortex lycii that showed significant hypoglycemic effects in our previous in vitro study. In this study, 9-(R)-HODE’s in vivo hypoglycemic activity and effect on alleviating diabetic complications, together with its molecular mechanism, was investig...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9633664/ https://www.ncbi.nlm.nih.gov/pubmed/36339561 http://dx.doi.org/10.3389/fphar.2022.1011608 |
_version_ | 1784824285237346304 |
---|---|
author | Liu, Yueqiu Hu, Xinyi Zheng, Wen Zhang, Lu Gui, Luolan Liang, Ge Zhang, Yong Hu, Liqiang Li, Xin Zhong, Yi Su, Tao Liu, Xin Cheng, Jingqiu Gong, Meng |
author_facet | Liu, Yueqiu Hu, Xinyi Zheng, Wen Zhang, Lu Gui, Luolan Liang, Ge Zhang, Yong Hu, Liqiang Li, Xin Zhong, Yi Su, Tao Liu, Xin Cheng, Jingqiu Gong, Meng |
author_sort | Liu, Yueqiu |
collection | PubMed |
description | The 9-(R)-HODE is an active compound isolated from cortex lycii that showed significant hypoglycemic effects in our previous in vitro study. In this study, 9-(R)-HODE’s in vivo hypoglycemic activity and effect on alleviating diabetic complications, together with its molecular mechanism, was investigated using a metabolomics approach. The monitored regulation on dynamic fasting blood glucose, postprandial glucose, body weight, biochemical parameters and histopathological analysis confirmed the hypoglycemic activity and attenuation effect, i.e., renal lesions, of 9-(R)-HODE. Subsequent metabolomic studies indicated that 9-(R)-HODE induced metabolomic alterations primarily by affecting the levels of amino acids, organic acids, alcohols and amines related to amino acid metabolism, glucose metabolism and energy metabolism. By mediating the related metabolism or single molecules related to insulin resistance, e.g., kynurenine, myo-inositol and the branched chain amino acids leucine, isoleucine and valine, 9-(R)-HODE achieved its therapeutic effect. Moreover, the mediation of kynurenine displayed a systematic effect on the liver, kidney, muscle, plasma and faeces. Lipidomic studies revealed that 9-(R)-HODE could reverse the lipid metabolism disorder in diabetic mice mainly by regulating phosphatidylinositols, lysophosphatidylcholines, lysophosphatidylcholines, phosphatidylserine, phosphatidylglycerols, lysophosphatidylglycerols and triglycerides in both tissues and plasma. Treatment with 9-(R)-HODE significantly modified the structure and composition of the gut microbiota. The SCFA-producing bacteria, including Rikenellaceae and Lactobacillaceae at the family level and Ruminiclostridium 6, Ruminococcaceae UCG 014, Mucispirillum, Lactobacillus, Alistipes and Roseburia at the genus level, were increased by 9-(R)-HODE treatment. These results were consistent with the increased SCFA levels in both the colon content and plasma of diabetic mice treated with 9-(R)-HODE. The tissue DESI‒MSI analysis strongly confirmed the validity of the metabolomics approach in illustrating the hypoglycemic and diabetic complications-alleviation effect of 9-(R)-HODE. The significant upregulation of liver glycogen in diabetic mice by 9-(R)-HODE treatment validated the interpretation of the metabolic pathways related to glycogen synthesis in the integrated pathway network. Altogether, 9-(R)-HODE has the potential to be further developed as a promising candidate for the treatment of diabetes. |
format | Online Article Text |
id | pubmed-9633664 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-96336642022-11-05 Action mechanism of hypoglycemic principle 9-(R)-HODE isolated from cortex lycii based on a metabolomics approach Liu, Yueqiu Hu, Xinyi Zheng, Wen Zhang, Lu Gui, Luolan Liang, Ge Zhang, Yong Hu, Liqiang Li, Xin Zhong, Yi Su, Tao Liu, Xin Cheng, Jingqiu Gong, Meng Front Pharmacol Pharmacology The 9-(R)-HODE is an active compound isolated from cortex lycii that showed significant hypoglycemic effects in our previous in vitro study. In this study, 9-(R)-HODE’s in vivo hypoglycemic activity and effect on alleviating diabetic complications, together with its molecular mechanism, was investigated using a metabolomics approach. The monitored regulation on dynamic fasting blood glucose, postprandial glucose, body weight, biochemical parameters and histopathological analysis confirmed the hypoglycemic activity and attenuation effect, i.e., renal lesions, of 9-(R)-HODE. Subsequent metabolomic studies indicated that 9-(R)-HODE induced metabolomic alterations primarily by affecting the levels of amino acids, organic acids, alcohols and amines related to amino acid metabolism, glucose metabolism and energy metabolism. By mediating the related metabolism or single molecules related to insulin resistance, e.g., kynurenine, myo-inositol and the branched chain amino acids leucine, isoleucine and valine, 9-(R)-HODE achieved its therapeutic effect. Moreover, the mediation of kynurenine displayed a systematic effect on the liver, kidney, muscle, plasma and faeces. Lipidomic studies revealed that 9-(R)-HODE could reverse the lipid metabolism disorder in diabetic mice mainly by regulating phosphatidylinositols, lysophosphatidylcholines, lysophosphatidylcholines, phosphatidylserine, phosphatidylglycerols, lysophosphatidylglycerols and triglycerides in both tissues and plasma. Treatment with 9-(R)-HODE significantly modified the structure and composition of the gut microbiota. The SCFA-producing bacteria, including Rikenellaceae and Lactobacillaceae at the family level and Ruminiclostridium 6, Ruminococcaceae UCG 014, Mucispirillum, Lactobacillus, Alistipes and Roseburia at the genus level, were increased by 9-(R)-HODE treatment. These results were consistent with the increased SCFA levels in both the colon content and plasma of diabetic mice treated with 9-(R)-HODE. The tissue DESI‒MSI analysis strongly confirmed the validity of the metabolomics approach in illustrating the hypoglycemic and diabetic complications-alleviation effect of 9-(R)-HODE. The significant upregulation of liver glycogen in diabetic mice by 9-(R)-HODE treatment validated the interpretation of the metabolic pathways related to glycogen synthesis in the integrated pathway network. Altogether, 9-(R)-HODE has the potential to be further developed as a promising candidate for the treatment of diabetes. Frontiers Media S.A. 2022-10-21 /pmc/articles/PMC9633664/ /pubmed/36339561 http://dx.doi.org/10.3389/fphar.2022.1011608 Text en Copyright © 2022 Liu, Hu, Zheng, Zhang, Gui, Liang, Zhang, Hu, Li, Zhong, Su, Liu, Cheng and Gong. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Pharmacology Liu, Yueqiu Hu, Xinyi Zheng, Wen Zhang, Lu Gui, Luolan Liang, Ge Zhang, Yong Hu, Liqiang Li, Xin Zhong, Yi Su, Tao Liu, Xin Cheng, Jingqiu Gong, Meng Action mechanism of hypoglycemic principle 9-(R)-HODE isolated from cortex lycii based on a metabolomics approach |
title | Action mechanism of hypoglycemic principle 9-(R)-HODE isolated from cortex lycii based on a metabolomics approach |
title_full | Action mechanism of hypoglycemic principle 9-(R)-HODE isolated from cortex lycii based on a metabolomics approach |
title_fullStr | Action mechanism of hypoglycemic principle 9-(R)-HODE isolated from cortex lycii based on a metabolomics approach |
title_full_unstemmed | Action mechanism of hypoglycemic principle 9-(R)-HODE isolated from cortex lycii based on a metabolomics approach |
title_short | Action mechanism of hypoglycemic principle 9-(R)-HODE isolated from cortex lycii based on a metabolomics approach |
title_sort | action mechanism of hypoglycemic principle 9-(r)-hode isolated from cortex lycii based on a metabolomics approach |
topic | Pharmacology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9633664/ https://www.ncbi.nlm.nih.gov/pubmed/36339561 http://dx.doi.org/10.3389/fphar.2022.1011608 |
work_keys_str_mv | AT liuyueqiu actionmechanismofhypoglycemicprinciple9rhodeisolatedfromcortexlyciibasedonametabolomicsapproach AT huxinyi actionmechanismofhypoglycemicprinciple9rhodeisolatedfromcortexlyciibasedonametabolomicsapproach AT zhengwen actionmechanismofhypoglycemicprinciple9rhodeisolatedfromcortexlyciibasedonametabolomicsapproach AT zhanglu actionmechanismofhypoglycemicprinciple9rhodeisolatedfromcortexlyciibasedonametabolomicsapproach AT guiluolan actionmechanismofhypoglycemicprinciple9rhodeisolatedfromcortexlyciibasedonametabolomicsapproach AT liangge actionmechanismofhypoglycemicprinciple9rhodeisolatedfromcortexlyciibasedonametabolomicsapproach AT zhangyong actionmechanismofhypoglycemicprinciple9rhodeisolatedfromcortexlyciibasedonametabolomicsapproach AT huliqiang actionmechanismofhypoglycemicprinciple9rhodeisolatedfromcortexlyciibasedonametabolomicsapproach AT lixin actionmechanismofhypoglycemicprinciple9rhodeisolatedfromcortexlyciibasedonametabolomicsapproach AT zhongyi actionmechanismofhypoglycemicprinciple9rhodeisolatedfromcortexlyciibasedonametabolomicsapproach AT sutao actionmechanismofhypoglycemicprinciple9rhodeisolatedfromcortexlyciibasedonametabolomicsapproach AT liuxin actionmechanismofhypoglycemicprinciple9rhodeisolatedfromcortexlyciibasedonametabolomicsapproach AT chengjingqiu actionmechanismofhypoglycemicprinciple9rhodeisolatedfromcortexlyciibasedonametabolomicsapproach AT gongmeng actionmechanismofhypoglycemicprinciple9rhodeisolatedfromcortexlyciibasedonametabolomicsapproach |