Cargando…
DeepFake knee osteoarthritis X-rays from generative adversarial neural networks deceive medical experts and offer augmentation potential to automatic classification
Recent developments in deep learning have impacted medical science. However, new privacy issues and regulatory frameworks have hindered medical data sharing and collection. Deep learning is a very data-intensive process for which such regulatory limitations limit the potential for new breakthroughs...
Autores principales: | Prezja, Fabi, Paloneva, Juha, Pölönen, Ilkka, Niinimäki, Esko, Äyrämö, Sami |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9633706/ https://www.ncbi.nlm.nih.gov/pubmed/36329253 http://dx.doi.org/10.1038/s41598-022-23081-4 |
Ejemplares similares
-
Improved accuracy in colorectal cancer tissue decomposition through refinement of established deep learning solutions
por: Prezja, Fabi, et al.
Publicado: (2023) -
DeepFake electrocardiograms using generative adversarial networks are the beginning of the end for privacy issues in medicine
por: Thambawita, Vajira, et al.
Publicado: (2021) -
TweepFake: About detecting deepfake tweets
por: Fagni, Tiziano, et al.
Publicado: (2021) -
Deepfakes, Fake Barns, and Knowledge from Videos
por: Matthews, Taylor
Publicado: (2023) -
Countering Malicious DeepFakes: Survey, Battleground, and Horizon
por: Juefei-Xu, Felix, et al.
Publicado: (2022)