Cargando…

Defatted black soldier fly (Hermetia illucens) in pikeperch (Sander lucioperca) diets: Effects on growth performance, nutrient digestibility, fillet quality, economic and environmental sustainability

The use of insect meal in aquafeed formulations has recently gained attention. Detailed knowledge about the inclusion levels for pikeperch (Sander lucioperca), a promising candidate for intensive aquaculture in Europe remains, however, fragmented. In the present study, 4 isoproteic (45% dry matter)...

Descripción completa

Detalles Bibliográficos
Autores principales: Stejskal, Vlastimil, Tran, Hung Quang, Prokesová, Markéta, Zare, Mahyar, Gebauer, Tatyana, Policar, Tomas, Caimi, Christian, Gai, Francesco, Gasco, Laura
Formato: Online Artículo Texto
Lenguaje:English
Publicado: KeAi Publishing 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9633741/
https://www.ncbi.nlm.nih.gov/pubmed/36381064
http://dx.doi.org/10.1016/j.aninu.2022.06.022
_version_ 1784824304796434432
author Stejskal, Vlastimil
Tran, Hung Quang
Prokesová, Markéta
Zare, Mahyar
Gebauer, Tatyana
Policar, Tomas
Caimi, Christian
Gai, Francesco
Gasco, Laura
author_facet Stejskal, Vlastimil
Tran, Hung Quang
Prokesová, Markéta
Zare, Mahyar
Gebauer, Tatyana
Policar, Tomas
Caimi, Christian
Gai, Francesco
Gasco, Laura
author_sort Stejskal, Vlastimil
collection PubMed
description The use of insect meal in aquafeed formulations has recently gained attention. Detailed knowledge about the inclusion levels for pikeperch (Sander lucioperca), a promising candidate for intensive aquaculture in Europe remains, however, fragmented. In the present study, 4 isoproteic (45% dry matter) and isoenergetic (21 MJ/kg) diets were formulated, including a control diet (H0) containing 30% fishmeal (FM) on an as-fed basis and the other 3 diets in which FM protein was replaced by defatted black soldier fly (Hemetia illucens) meal (HIM) at 25%, 50%, and 100% (diet abbreviation H9, H18 and H36, corresponding to an inclusion level of 9%, 18% and 36%, respectively). The feeding trial was performed in triplicate groups of 50 juvenile pikeperch (mean weight, 68.7 g) fed with experimental diets for 84 d during which the growth performance, nutrient digestibility, fillet quality and economic and environmental sustainability of rearing pikeperch were evaluated. Our findings indicated that pikeperch in H0, H9, and H18 groups displayed better results regarding growth performance indices, except for survival rate where no significant difference among groups was recorded (P = 0.642). A significantly lower organ-somatic index, including hepatosomatic, viscerosomatic and perivisceral fat index, was found in fish in H18 groups than other groups (P < 0.05). Inclusion of HIM affected the digestibility of the nutrients and resulted in an almost linear reduction in the apparent digestibility coefficient of dry matter and protein. Concerning the fillet quality, dietary HIM negatively affected the protein and ash contents of the fish fillets, while the crude fat remained unchanged. Dietary HIM did not significantly modify total saturated, monounsaturated and polyunsaturated fatty acids in the fillets of fed pikeperch (P > 0.05) but did reduce total n-3 fatty acids (P = 0.001) and increased total n-6 (P < 0.001). Increasing inclusion levels of HIM reduced the environmental impacts associated with fish in-to-fish out ratio but entailed heavy burdens on energy use and eutrophication. Low and moderate inclusion levels of HIM did not negatively affect land use and water use compared to an HIM-free diet (P > 0.05). The addition of HIM at a level as low as 9% elicited a similar carbon footprint to that of the control diet. The economic conversion ratio and economic profit index were negatively affected at increased insect meal inclusion levels. This study has shown that the incorporation of HIM in feed formulations for pikeperch is feasible at inclusion levels of 18% without adverse effects on growth performance parameters. The feasibility also highlighted the environmental benefits associated with land use and marine resources required to produce farmed fish.
format Online
Article
Text
id pubmed-9633741
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher KeAi Publishing
record_format MEDLINE/PubMed
spelling pubmed-96337412022-11-14 Defatted black soldier fly (Hermetia illucens) in pikeperch (Sander lucioperca) diets: Effects on growth performance, nutrient digestibility, fillet quality, economic and environmental sustainability Stejskal, Vlastimil Tran, Hung Quang Prokesová, Markéta Zare, Mahyar Gebauer, Tatyana Policar, Tomas Caimi, Christian Gai, Francesco Gasco, Laura Anim Nutr Original Research Article The use of insect meal in aquafeed formulations has recently gained attention. Detailed knowledge about the inclusion levels for pikeperch (Sander lucioperca), a promising candidate for intensive aquaculture in Europe remains, however, fragmented. In the present study, 4 isoproteic (45% dry matter) and isoenergetic (21 MJ/kg) diets were formulated, including a control diet (H0) containing 30% fishmeal (FM) on an as-fed basis and the other 3 diets in which FM protein was replaced by defatted black soldier fly (Hemetia illucens) meal (HIM) at 25%, 50%, and 100% (diet abbreviation H9, H18 and H36, corresponding to an inclusion level of 9%, 18% and 36%, respectively). The feeding trial was performed in triplicate groups of 50 juvenile pikeperch (mean weight, 68.7 g) fed with experimental diets for 84 d during which the growth performance, nutrient digestibility, fillet quality and economic and environmental sustainability of rearing pikeperch were evaluated. Our findings indicated that pikeperch in H0, H9, and H18 groups displayed better results regarding growth performance indices, except for survival rate where no significant difference among groups was recorded (P = 0.642). A significantly lower organ-somatic index, including hepatosomatic, viscerosomatic and perivisceral fat index, was found in fish in H18 groups than other groups (P < 0.05). Inclusion of HIM affected the digestibility of the nutrients and resulted in an almost linear reduction in the apparent digestibility coefficient of dry matter and protein. Concerning the fillet quality, dietary HIM negatively affected the protein and ash contents of the fish fillets, while the crude fat remained unchanged. Dietary HIM did not significantly modify total saturated, monounsaturated and polyunsaturated fatty acids in the fillets of fed pikeperch (P > 0.05) but did reduce total n-3 fatty acids (P = 0.001) and increased total n-6 (P < 0.001). Increasing inclusion levels of HIM reduced the environmental impacts associated with fish in-to-fish out ratio but entailed heavy burdens on energy use and eutrophication. Low and moderate inclusion levels of HIM did not negatively affect land use and water use compared to an HIM-free diet (P > 0.05). The addition of HIM at a level as low as 9% elicited a similar carbon footprint to that of the control diet. The economic conversion ratio and economic profit index were negatively affected at increased insect meal inclusion levels. This study has shown that the incorporation of HIM in feed formulations for pikeperch is feasible at inclusion levels of 18% without adverse effects on growth performance parameters. The feasibility also highlighted the environmental benefits associated with land use and marine resources required to produce farmed fish. KeAi Publishing 2022-09-12 /pmc/articles/PMC9633741/ /pubmed/36381064 http://dx.doi.org/10.1016/j.aninu.2022.06.022 Text en © 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Original Research Article
Stejskal, Vlastimil
Tran, Hung Quang
Prokesová, Markéta
Zare, Mahyar
Gebauer, Tatyana
Policar, Tomas
Caimi, Christian
Gai, Francesco
Gasco, Laura
Defatted black soldier fly (Hermetia illucens) in pikeperch (Sander lucioperca) diets: Effects on growth performance, nutrient digestibility, fillet quality, economic and environmental sustainability
title Defatted black soldier fly (Hermetia illucens) in pikeperch (Sander lucioperca) diets: Effects on growth performance, nutrient digestibility, fillet quality, economic and environmental sustainability
title_full Defatted black soldier fly (Hermetia illucens) in pikeperch (Sander lucioperca) diets: Effects on growth performance, nutrient digestibility, fillet quality, economic and environmental sustainability
title_fullStr Defatted black soldier fly (Hermetia illucens) in pikeperch (Sander lucioperca) diets: Effects on growth performance, nutrient digestibility, fillet quality, economic and environmental sustainability
title_full_unstemmed Defatted black soldier fly (Hermetia illucens) in pikeperch (Sander lucioperca) diets: Effects on growth performance, nutrient digestibility, fillet quality, economic and environmental sustainability
title_short Defatted black soldier fly (Hermetia illucens) in pikeperch (Sander lucioperca) diets: Effects on growth performance, nutrient digestibility, fillet quality, economic and environmental sustainability
title_sort defatted black soldier fly (hermetia illucens) in pikeperch (sander lucioperca) diets: effects on growth performance, nutrient digestibility, fillet quality, economic and environmental sustainability
topic Original Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9633741/
https://www.ncbi.nlm.nih.gov/pubmed/36381064
http://dx.doi.org/10.1016/j.aninu.2022.06.022
work_keys_str_mv AT stejskalvlastimil defattedblacksoldierflyhermetiaillucensinpikeperchsanderluciopercadietseffectsongrowthperformancenutrientdigestibilityfilletqualityeconomicandenvironmentalsustainability
AT tranhungquang defattedblacksoldierflyhermetiaillucensinpikeperchsanderluciopercadietseffectsongrowthperformancenutrientdigestibilityfilletqualityeconomicandenvironmentalsustainability
AT prokesovamarketa defattedblacksoldierflyhermetiaillucensinpikeperchsanderluciopercadietseffectsongrowthperformancenutrientdigestibilityfilletqualityeconomicandenvironmentalsustainability
AT zaremahyar defattedblacksoldierflyhermetiaillucensinpikeperchsanderluciopercadietseffectsongrowthperformancenutrientdigestibilityfilletqualityeconomicandenvironmentalsustainability
AT gebauertatyana defattedblacksoldierflyhermetiaillucensinpikeperchsanderluciopercadietseffectsongrowthperformancenutrientdigestibilityfilletqualityeconomicandenvironmentalsustainability
AT policartomas defattedblacksoldierflyhermetiaillucensinpikeperchsanderluciopercadietseffectsongrowthperformancenutrientdigestibilityfilletqualityeconomicandenvironmentalsustainability
AT caimichristian defattedblacksoldierflyhermetiaillucensinpikeperchsanderluciopercadietseffectsongrowthperformancenutrientdigestibilityfilletqualityeconomicandenvironmentalsustainability
AT gaifrancesco defattedblacksoldierflyhermetiaillucensinpikeperchsanderluciopercadietseffectsongrowthperformancenutrientdigestibilityfilletqualityeconomicandenvironmentalsustainability
AT gascolaura defattedblacksoldierflyhermetiaillucensinpikeperchsanderluciopercadietseffectsongrowthperformancenutrientdigestibilityfilletqualityeconomicandenvironmentalsustainability